These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 31590652)
1. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU. Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652 [TBL] [Abstract][Full Text] [Related]
2. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
3. Predicting regulatory variants using a dense epigenomic mapped CNN model elucidated the molecular basis of trait-tissue associations. Pei G; Hu R; Dai Y; Manuel AM; Zhao Z; Jia P Nucleic Acids Res; 2021 Jan; 49(1):53-66. PubMed ID: 33300042 [TBL] [Abstract][Full Text] [Related]
4. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
5. A Distributed Classifier for MicroRNA Target Prediction with Validation Through TCGA Expression Data. Ghoshal A; Zhang J; Roth MA; Xia KM; Grama AY; Chaterji S IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1037-1051. PubMed ID: 29993641 [TBL] [Abstract][Full Text] [Related]
6. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network. Zeng W; Wang Y; Jiang R Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408 [TBL] [Abstract][Full Text] [Related]
7. EpiCompare: an online tool to define and explore genomic regions with tissue or cell type-specific epigenomic features. He Y; Wang T Bioinformatics; 2017 Oct; 33(20):3268-3275. PubMed ID: 28605501 [TBL] [Abstract][Full Text] [Related]
8. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks. Xiao M; Zhuang Z; Pan W Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774 [TBL] [Abstract][Full Text] [Related]
9. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model. Hu R; Pei G; Jia P; Zhao Z Methods; 2021 May; 189():44-53. PubMed ID: 31672653 [TBL] [Abstract][Full Text] [Related]
10. The impact of different negative training data on regulatory sequence predictions. Krützfeldt LM; Schubach M; Kircher M PLoS One; 2020; 15(12):e0237412. PubMed ID: 33259518 [TBL] [Abstract][Full Text] [Related]
11. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning. Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732 [TBL] [Abstract][Full Text] [Related]
12. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures. Girgis HZ; Velasco A; Reyes ZE BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808 [TBL] [Abstract][Full Text] [Related]
13. Enhancer prediction with histone modification marks using a hybrid neural network model. Lim A; Lim S; Kim S Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748 [TBL] [Abstract][Full Text] [Related]
14. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection. Oh D; Strattan JS; Hur JK; Bento J; Urban AE; Song G; Cherry JM Sci Rep; 2020 May; 10(1):7933. PubMed ID: 32404971 [TBL] [Abstract][Full Text] [Related]
15. Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Ay B; Turker C; Emre E; Ay K; Aydin G Comput Biol Med; 2022 Aug; 147():105725. PubMed ID: 35716434 [TBL] [Abstract][Full Text] [Related]
16. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process. Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641 [TBL] [Abstract][Full Text] [Related]
17. The identification of cis-regulatory elements: A review from a machine learning perspective. Li Y; Chen CY; Kaye AM; Wasserman WW Biosystems; 2015 Dec; 138():6-17. PubMed ID: 26499213 [TBL] [Abstract][Full Text] [Related]
18. DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays. Chen Z; Zhang J; Liu J; Dai Y; Lee D; Min MR; Xu M; Gerstein M Bioinformatics; 2021 Jul; 37(Suppl_1):i280-i288. PubMed ID: 34252960 [TBL] [Abstract][Full Text] [Related]
19. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
20. Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3. Bredesen-Aa BA; Rehmsmeier M PLoS One; 2022; 17(9):e0274338. PubMed ID: 36084008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]