These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31590841)

  • 1. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions.
    Gao H; Sun Q; Han Z; Li J; Liao B; Hu L; Huang J; Zou C; Jia C; Huang J; Chang Z; Jiang D; Jin M
    Carbohydr Polym; 2020 Jan; 227():115323. PubMed ID: 31590841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens.
    Taweecheep P; Naloka K; Matsutani M; Yakushi T; Matsushita K; Theeragool G
    Carbohydr Polym; 2019 Dec; 226():115243. PubMed ID: 31582059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture.
    Bi JC; Liu SX; Li CF; Li J; Liu LX; Deng J; Yang YC
    J Appl Microbiol; 2014 Nov; 117(5):1305-11. PubMed ID: 25098972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus.
    Jaroennonthasit W; Lam NT; Sukyai P
    Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Microb Biotechnol; 2019 Jul; 12(4):677-687. PubMed ID: 30912251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions.
    Bai Y; Tan R; Yan Y; Chen T; Feng Y; Sun Q; Li J; Wang Y; Liu F; Wang J; Zhang Y; Cheng X; Wu G
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):68. PubMed ID: 38802837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium.
    Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M
    N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive laboratory evolution of nanocellulose-producing bacterium.
    Vasconcellos VM; Farinas CS; Ximenes E; Slininger P; Ladisch M
    Biotechnol Bioeng; 2019 Aug; 116(8):1923-1933. PubMed ID: 31038201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial nanocellulose: A versatile biopolymer production using a cost-effective wooden disc based rotary reactor.
    Jagtap A; Dastager SG
    Biopolymers; 2024 Jul; 115(4):e23577. PubMed ID: 38526043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.
    Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP
    Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans.
    Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI
    Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine.
    Wiegand C; Moritz S; Hessler N; Kralisch D; Wesarg F; Müller FA; Fischer D; Hipler UC
    J Mater Sci Mater Med; 2015 Oct; 26(10):245. PubMed ID: 26411441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completely amorphous cellulose biosynthesized in agitated culture at low temperature.
    Hu Y; Sheng J; Yan Z; Ke Q
    Int J Biol Macromol; 2018 Oct; 117():967-973. PubMed ID: 29883701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain.
    Hu Y; Catchmark JM
    Biomacromolecules; 2010 Jul; 11(7):1727-34. PubMed ID: 20518455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.