These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31591136)

  • 1. Enhanced carbonyl stress induces irreversible multimerization of CRMP2 in schizophrenia pathogenesis.
    Toyoshima M; Jiang X; Ogawa T; Ohnishi T; Yoshihara S; Balan S; Yoshikawa T; Hirokawa N
    Life Sci Alliance; 2019 Oct; 2(5):. PubMed ID: 31591136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for CRMP2-induced axonal microtubule formation.
    Niwa S; Nakamura F; Tomabechi Y; Aoki M; Shigematsu H; Matsumoto T; Yamagata A; Fukai S; Hirokawa N; Goshima Y; Shirouzu M; Nitta R
    Sci Rep; 2017 Sep; 7(1):10681. PubMed ID: 28878401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insights into the Altering Function of CRMP2 by Phosphorylation.
    Sumi T; Imasaki T; Aoki M; Sakai N; Nitta E; Shirouzu M; Nitta R
    Cell Struct Funct; 2018; 43(1):15-23. PubMed ID: 29479005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced carbonyl stress in a subpopulation of schizophrenia.
    Arai M; Yuzawa H; Nohara I; Ohnishi T; Obata N; Iwayama Y; Haga S; Toyota T; Ujike H; Arai M; Ichikawa T; Nishida A; Tanaka Y; Furukawa A; Aikawa Y; Kuroda O; Niizato K; Izawa R; Nakamura K; Mori N; Matsuzawa D; Hashimoto K; Iyo M; Sora I; Matsushita M; Okazaki Y; Yoshikawa T; Miyata T; Itokawa M
    Arch Gen Psychiatry; 2010 Jun; 67(6):589-97. PubMed ID: 20530008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis.
    Tobe BTD; Crain AM; Winquist AM; Calabrese B; Makihara H; Zhao WN; Lalonde J; Nakamura H; Konopaske G; Sidor M; Pernia CD; Yamashita N; Wada M; Inoue Y; Nakamura F; Sheridan SD; Logan RW; Brandel M; Wu D; Hunsberger J; Dorsett L; Duerr C; Basa RCB; McCarthy MJ; Udeshi ND; Mertins P; Carr SA; Rouleau GA; Mastrangelo L; Li J; Gutierrez GJ; Brill LM; Venizelos N; Chen G; Nye JS; Manji H; Price JH; McClung CA; Akiskal HS; Alda M; Chuang DM; Coyle JT; Liu Y; Teng YD; Ohshima T; Mikoshiba K; Sidman RL; Halpain S; Haggarty SJ; Goshima Y; Snyder EY
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4462-E4471. PubMed ID: 28500272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of a glyoxalase I frameshift variant, p.P122fs, in Japanese patients with schizophrenia.
    Ishizuka K; Kimura H; Kushima I; Inada T; Okahisa Y; Ikeda M; Iwata N; Mori D; Aleksic B; Ozaki N
    Psychiatr Genet; 2018 Oct; 28(5):90-93. PubMed ID: 29975244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons.
    Hara T; Toyoshima M; Hisano Y; Balan S; Iwayama Y; Aono H; Futamura Y; Osada H; Owada Y; Yoshikawa T
    Transl Psychiatry; 2021 May; 11(1):275. PubMed ID: 33966051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a dithiol-disulfide switch in collapsin response mediator protein 2 (CRMP2) that is toggled in a model of neuronal differentiation.
    Gellert M; Venz S; Mitlöhner J; Cott C; Hanschmann EM; Lillig CH
    J Biol Chem; 2013 Dec; 288(49):35117-25. PubMed ID: 24133216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Studies on pathophysiology of schizophrenia with a rare variant as a clue].
    Itokawa M; Arai M; Ichikawa T; Miyashita M; Okazaki Y
    Brain Nerve; 2011 Mar; 63(3):223-31. PubMed ID: 21386123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The accumulation of advanced glycation end-products in a schizophrenic patient with a glyoxalase 1 frameshift mutation: An autopsy study.
    Torii Y; Iritani S; Sekiguchi H; Habuchi C; Fujishiro H; Kushima I; Kawakami I; Itokawa M; Arai M; Hayashida S; Masaki K; Kira JI; Kawashima K; Ozaki N
    Schizophr Res; 2020 Sep; 223():356-358. PubMed ID: 33008688
    [No Abstract]   [Full Text] [Related]  

  • 11. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue.
    Martins-de-Souza D; Cassoli JS; Nascimento JM; Hensley K; Guest PC; Pinzon-Velasco AM; Turck CW
    Proteomics Clin Appl; 2015 Oct; 9(9-10):817-31. PubMed ID: 25921334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses.
    Nagai J; Owada K; Kitamura Y; Goshima Y; Ohshima T
    Exp Neurol; 2016 Mar; 277():283-295. PubMed ID: 26795088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications.
    Hensley K; Venkova K; Christov A; Gunning W; Park J
    Mol Neurobiol; 2011 Jun; 43(3):180-91. PubMed ID: 21271304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport.
    Yoshihara S; Jiang X; Morikawa M; Ogawa T; Ichinose S; Yabe H; Kakita A; Toyoshima M; Kunii Y; Yoshikawa T; Tanaka Y; Hirokawa N
    Cell Rep; 2021 Apr; 35(2):108971. PubMed ID: 33852848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function.
    Dustrude ET; Perez-Miller S; François-Moutal L; Moutal A; Khanna M; Khanna R
    Channels (Austin); 2017 Jul; 11(4):316-328. PubMed ID: 28277940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of the glyoxalase system in schizophrenia.
    Bangel FN; Yamada K; Arai M; Iwayama Y; Balan S; Toyota T; Iwata Y; Suzuki K; Kikuchi M; Hashimoto T; Kanahara N; Mori N; Itokawa M; Stork O; Yoshikawa T
    Prog Neuropsychopharmacol Biol Psychiatry; 2015 Jun; 59():105-110. PubMed ID: 25645869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5.
    Moutal A; François-Moutal L; Perez-Miller S; Cottier K; Chew LA; Yeon SK; Dai J; Park KD; Khanna M; Khanna R
    Mol Neurobiol; 2016 Apr; 53(3):1959-1976. PubMed ID: 25846820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evidence that a dysregulated master neural network modulator may aid in diagnosing schizophrenia.
    Nomoto M; Konopaske GT; Yamashita N; Aoki R; Jitsuki-Takahashi A; Nakamura H; Makihara H; Saito M; Saigusa Y; Nakamura F; Watanabe K; Baba T; Benes FM; Tobe BTD; Pernia CD; Coyle JT; Sidman RL; Hirayasu Y; Snyder EY; Goshima Y
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34330827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: implications for the therapeutic potential of lacosamide.
    Wilson SM; Khanna R
    Mol Neurobiol; 2015 Apr; 51(2):599-609. PubMed ID: 24944082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations and in vitro analysis of the CRMP2 thiol switch.
    Möller D; Gellert M; Langel W; Lillig CH
    Mol Biosyst; 2017 Aug; 13(9):1744-1753. PubMed ID: 28726921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.