These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31591190)

  • 1. Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells.
    Li L; Li Y; Sottas C; Culty M; Fan J; Hu Y; Cheung G; Chemes HE; Papadopoulos V
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23274-23283. PubMed ID: 31591190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of Human Induced Pluripotent Stem Cells Into Testosterone-Producing Leydig-like Cells.
    Ishida T; Koyanagi-Aoi M; Yamamiya D; Onishi A; Sato K; Uehara K; Fujisawa M; Aoi T
    Endocrinology; 2021 Dec; 162(12):. PubMed ID: 34549267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of human induced pluripotent stem cells into Leydig-like cells with molecular compounds.
    Chen X; Li C; Chen Y; Xi H; Zhao S; Ma L; Xu Z; Han Z; Zhao J; Ge R; Guo X
    Cell Death Dis; 2019 Mar; 10(3):220. PubMed ID: 30833541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of human umbilical cord mesenchymal stem cells into Leydig-like cells with defined molecular compounds.
    Ji W; Chen Y; Wang L; Xu Z; Ahmed J; Ge R; Chu M; Guo X
    Hum Cell; 2020 Apr; 33(2):318-329. PubMed ID: 32034722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Differentiation of Human Embryonic Stem Cells into Testosterone-Producing Leydig Cell-Like Cells In vitro.
    Shin EY; Park S; Choi WY; Lee DR
    Tissue Eng Regen Med; 2021 Aug; 18(4):651-662. PubMed ID: 34165777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in stem cell research for the treatment of primary hypogonadism.
    Li L; Papadopoulos V
    Nat Rev Urol; 2021 Aug; 18(8):487-507. PubMed ID: 34188209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications.
    Chen P; Zirkin BR; Chen H
    Endocr Rev; 2020 Feb; 41(1):22-32. PubMed ID: 31673697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endosialin defines human stem Leydig cells with regenerative potential.
    Xia K; Ma Y; Feng X; Deng R; Ke Q; Xiang AP; Deng C
    Hum Reprod; 2020 Oct; 35(10):2197-2212. PubMed ID: 32951040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome.
    Lottrup G; Nielsen JE; Maroun LL; Møller LM; Yassin M; Leffers H; Skakkebæk NE; Rajpert-De Meyts E
    Hum Reprod; 2014 Aug; 29(8):1637-50. PubMed ID: 24908673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed mouse embryonic stem cells into leydig-like cells rescue testosterone-deficient male rats in vivo.
    Yang Y; Su Z; Xu W; Luo J; Liang R; Xiang Q; Zhang Q; Ge RS; Huang Y
    Stem Cells Dev; 2015 Feb; 24(4):459-70. PubMed ID: 25340537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leydig cell aging and hypogonadism.
    Beattie MC; Adekola L; Papadopoulos V; Chen H; Zirkin BR
    Exp Gerontol; 2015 Aug; 68():87-91. PubMed ID: 25700847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells.
    Liu ZJ; Liu YH; Huang SY; Zang ZJ
    Stem Cell Rev Rep; 2021 Oct; 17(5):1521-1533. PubMed ID: 33598893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production.
    Zhang M; Wang J; Deng C; Jiang MH; Feng X; Xia K; Li W; Lai X; Xiao H; Ge RS; Gao Y; Xiang AP
    Cell Death Dis; 2017 Oct; 8(10):e3123. PubMed ID: 29022899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis.
    Aghazadeh Y; Zirkin BR; Papadopoulos V
    Vitam Horm; 2015; 98():189-227. PubMed ID: 25817870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leydig cell aging: Molecular mechanisms and treatments.
    Papadopoulos V; Zirkin BR
    Vitam Horm; 2021; 115():585-609. PubMed ID: 33706963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal regulation of steroidogenic enzyme gene expression in Leydig cells.
    Payne AH; Youngblood GL; Sha L; Burgos-Trinidad M; Hammond SH
    J Steroid Biochem Mol Biol; 1992 Dec; 43(8):895-906. PubMed ID: 22217834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of reappearance of luteinizing hormone receptor expression and function in rat testis after selective Leydig cell destruction by ethylene dimethane sulfonate.
    Tena-Sempere M; Rannikko A; Kero J; Zhang FP; Huhtaniemi IT
    Endocrinology; 1997 Aug; 138(8):3340-8. PubMed ID: 9231786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro.
    Hou L; Dong Q; Wu YJ; Sun YX; Guo YY; Huo YH
    Kaohsiung J Med Sci; 2016 Jan; 32(1):1-9. PubMed ID: 26853168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Leydig-like cells: approaches, characterization, and challenges.
    Li ZH; Lu JD; Li SJ; Chen HL; Su ZJ
    Asian J Androl; 2022; 24(4):335-344. PubMed ID: 35017389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Reprogramming of Mouse Fibroblasts toward Leydig-like Cells by Defined Factors.
    Yang Y; Li Z; Wu X; Chen H; Xu W; Xiang Q; Zhang Q; Chen J; Ge RS; Su Z; Huang Y
    Stem Cell Reports; 2017 Jan; 8(1):39-53. PubMed ID: 28017657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.