These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia. Frantz MG; Kast RJ; Dorton HM; Chapman KS; McGee AW Cereb Cortex; 2016 May; 26(5):1975-85. PubMed ID: 25662716 [TBL] [Abstract][Full Text] [Related]
5. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience. Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158 [TBL] [Abstract][Full Text] [Related]
6. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of vision by monocular deprivation in adult mice. Prusky GT; Alam NM; Douglas RM J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076 [TBL] [Abstract][Full Text] [Related]
8. Recovery of binocular responses after brief monocular deprivation in kittens. Kameyama K; Hata Y; Tsumoto T Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269 [TBL] [Abstract][Full Text] [Related]
9. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270 [TBL] [Abstract][Full Text] [Related]
10. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation. Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470 [TBL] [Abstract][Full Text] [Related]
11. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Kuhlman SJ; Olivas ND; Tring E; Ikrar T; Xu X; Trachtenberg JT Nature; 2013 Sep; 501(7468):543-6. PubMed ID: 23975100 [TBL] [Abstract][Full Text] [Related]
12. Anatomical correlates of functional plasticity in mouse visual cortex. Antonini A; Fagiolini M; Stryker MP J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241 [TBL] [Abstract][Full Text] [Related]
13. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Zhou Y; Lai B; Gan WB Sci Rep; 2017 Jul; 7(1):4977. PubMed ID: 28694464 [TBL] [Abstract][Full Text] [Related]
14. Homeostatic plasticity in the visual thalamus by monocular deprivation. Krahe TE; Guido W J Neurosci; 2011 May; 31(18):6842-9. PubMed ID: 21543614 [TBL] [Abstract][Full Text] [Related]
15. Classification of Visual Cortex Plasticity Phenotypes following Treatment for Amblyopia. Balsor JL; Jones DG; Murphy KM Neural Plast; 2019; 2019():2564018. PubMed ID: 31565045 [TBL] [Abstract][Full Text] [Related]
16. Experience leaves a lasting structural trace in cortical circuits. Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M Nature; 2009 Jan; 457(7227):313-7. PubMed ID: 19005470 [TBL] [Abstract][Full Text] [Related]
17. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex. Medini P J Neurosci; 2011 Nov; 31(47):17134-48. PubMed ID: 22114282 [TBL] [Abstract][Full Text] [Related]