BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31591266)

  • 1. Molecular analysis of an enigmatic
    Hobbs JK; Meier EPW; Pluvinage B; Mey MA; Boraston AB
    J Biol Chem; 2019 Nov; 294(46):17197-17208. PubMed ID: 31591266
    [No Abstract]   [Full Text] [Related]  

  • 2. Capacity To Utilize Raffinose Dictates Pneumococcal Disease Phenotype.
    Minhas V; Harvey RM; McAllister LJ; Seemann T; Syme AE; Baines SL; Paton JC; Trappetti C
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647157
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of dihydrolipoamide dehydrogenase in regulation of raffinose transport in Streptococcus pneumoniae.
    Tyx RE; Roche-Hakansson H; Hakansson AP
    J Bacteriol; 2011 Jul; 193(14):3512-24. PubMed ID: 21602335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in
    Arunraj R; Skori L; Kumar A; Hickerson NMN; Shoma N; M V; Samuel MA
    Plant Signal Behav; 2020 Aug; 15(8):1709707. PubMed ID: 31906799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence.
    Robb M; Hobbs JK; Woodiga SA; Shapiro-Ward S; Suits MD; McGregor N; Brumer H; Yesilkaya H; King SJ; Boraston AB
    PLoS Pathog; 2017 Jan; 13(1):e1006090. PubMed ID: 28056108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 7.
    Agnew HN; Brazel EB; Tikhomirova A; van der Linden M; McLean KT; Paton JC; Trappetti C
    Front Cell Infect Microbiol; 2022; 12():866259. PubMed ID: 35433506
    [No Abstract]   [Full Text] [Related]  

  • 8. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm.
    Hobbs JK; Pluvinage B; Boraston AB
    FEBS Lett; 2018 Dec; 592(23):3865-3897. PubMed ID: 29608212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system.
    Rosenow C; Maniar M; Trias J
    Genome Res; 1999 Dec; 9(12):1189-97. PubMed ID: 10613841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits.
    Hua B; Zhang M; Zhang J; Dai H; Zhang Z; Miao M
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Proteins and Pneumolysin of Encapsulated and Nonencapsulated Streptococcus pneumoniae Mediate Virulence in a Chinchilla Model of Otitis Media.
    Keller LE; Bradshaw JL; Pipkins H; McDaniel LS
    Front Cell Infect Microbiol; 2016; 6():55. PubMed ID: 27242973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of raffinose family oligosaccharide use in
    Basu A; Adams AND; Degnan PH; Vanderpool CK
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895307
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of a thermostable glycoside hydrolase family 36 α-galactosidase from Caldicellulosiruptor bescii.
    Lee A; Choi KH; Yoon D; Kim S; Cha J
    J Biosci Bioeng; 2017 Sep; 124(3):289-295. PubMed ID: 28479043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the dihydrolipoamide dehydrogenase from Streptococcus pneumoniae and its role in pneumococcal infection.
    Smith AW; Roche H; Trombe MC; Briles DE; Håkansson A
    Mol Microbiol; 2002 Apr; 44(2):431-48. PubMed ID: 11972781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA.
    Singh AK; Pluvinage B; Higgins MA; Dalia AB; Woodiga SA; Flynn M; Lloyd AR; Weiser JN; Stubbs KA; Boraston AB; King SJ
    PLoS Pathog; 2014 Sep; 10(9):e1004364. PubMed ID: 25210925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.
    Chuankhayan P; Lee RH; Guan HH; Lin CC; Chen NC; Huang YC; Yoshimura M; Nakagawa A; Chen CJ
    Acta Crystallogr D Struct Biol; 2023 Feb; 79(Pt 2):154-167. PubMed ID: 36762861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The LuxS/AI-2 Quorum-Sensing System of
    Yadav MK; Vidal JE; Go YY; Kim SH; Chae SW; Song JJ
    Front Cell Infect Microbiol; 2018; 8():138. PubMed ID: 29780750
    [No Abstract]   [Full Text] [Related]  

  • 18. Glycosyltransferases within the
    Middleton DR; Aceil J; Mustafa S; Paschall AV; Avci FY
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two complementary α-fucosidases from
    Hobbs JK; Pluvinage B; Robb M; Smith SP; Boraston AB
    J Biol Chem; 2019 Aug; 294(34):12670-12682. PubMed ID: 31266803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pivotal Roles for Ribonucleases in Streptococcus pneumoniae Pathogenesis.
    Sinha D; Frick JP; Clemons K; Winkler ME; De Lay NR
    mBio; 2021 Oct; 12(5):e0238521. PubMed ID: 34544281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.