These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31591394)

  • 21. Early Archaean microorganisms preferred elemental sulfur, not sulfate.
    Philippot P; Van Zuilen M; Lepot K; Thomazo C; Farquhar J; Van Kranendonk MJ
    Science; 2007 Sep; 317(5844):1534-7. PubMed ID: 17872441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.
    Ohmoto H; Kakegawa T; Lowe DR
    Science; 1993 Oct; 262():555-7. PubMed ID: 11539502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
    Hansel CM; Lentini CJ; Tang Y; Johnston DT; Wankel SD; Jardine PM
    ISME J; 2015 Nov; 9(11):2400-12. PubMed ID: 25871933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfate burial constraints on the Phanerozoic sulfur cycle.
    Halevy I; Peters SE; Fischer WW
    Science; 2012 Jul; 337(6092):331-4. PubMed ID: 22822147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geochemistry. Continental margins and the sulfur cycle.
    Derry LA; Murray RW
    Science; 2004 Mar; 303(5666):1981-2. PubMed ID: 15044791
    [No Abstract]   [Full Text] [Related]  

  • 26. Global geochemical cycles of carbon, sulfur and oxygen.
    Walker JC
    Mar Geol; 1986; 70():159-74. PubMed ID: 11543319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes.
    Strauss H; Bast R; Cording A; Diekrup D; Fugmann A; Garbe-Schönberg D; Lutter A; Oeser M; Rabe K; Reinke D; Teichert BM; Westernströer U
    Isotopes Environ Health Stud; 2012; 48(1):166-79. PubMed ID: 22303924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur.
    Canfield DE; Thamdrup B
    Science; 1994 Dec; 266():1973-5. PubMed ID: 11540246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Dziani Dzaha Lake: A long-awaited modern analogue for superheavy pyrites.
    Cadeau P; Cartigny P; Thomazo C; Jézéquel D; Leboulanger C; Sarazin G; Ader M
    Geobiology; 2022 May; 20(3):444-461. PubMed ID: 35064739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction.
    Watanabe Y; Farquhar J; Ohmoto H
    Science; 2009 Apr; 324(5925):370-3. PubMed ID: 19372427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Late Archean biospheric oxygenation and atmospheric evolution.
    Kaufman AJ; Johnston DT; Farquhar J; Masterson AL; Lyons TW; Bates S; Anbar AD; Arnold GL; Garvin J; Buick R
    Science; 2007 Sep; 317(5846):1900-3. PubMed ID: 17901329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.
    Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K
    Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction.
    Zhelezinskaia I; Kaufman AJ; Farquhar J; Cliff J
    Science; 2014 Nov; 346(6210):742-4. PubMed ID: 25378623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfate clues for the early history of atmospheric oxygen.
    Paytan A
    Science; 2000 Apr; 288(5466):626-7. PubMed ID: 10798999
    [No Abstract]   [Full Text] [Related]  

  • 35. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina.
    Hasler-Sheetal H; Holmer M
    PLoS One; 2015; 10(6):e0129136. PubMed ID: 26030258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.
    Santos AA; Venceslau SS; Grein F; Leavitt WD; Dahl C; Johnston DT; Pereira IA
    Science; 2015 Dec; 350(6267):1541-5. PubMed ID: 26680199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large sulfur isotope fractionation by bacterial sulfide oxidation.
    Pellerin A; Antler G; Holm SA; Findlay AJ; Crockford PW; Turchyn AV; Jørgensen BB; Finster K
    Sci Adv; 2019 Jul; 5(7):eaaw1480. PubMed ID: 31355330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth.
    Colman DR; Lindsay MR; Amenabar MJ; Fernandes-Martins MC; Roden ER; Boyd ES
    ISME J; 2020 May; 14(5):1316-1331. PubMed ID: 32066874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unprecedented
    Drake H; Whitehouse MJ; Heim C; Reiners PW; Tillberg M; Hogmalm KJ; Dopson M; Broman C; Åström ME
    Geobiology; 2018 Sep; 16(5):556-574. PubMed ID: 29947123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A contemporary microbially maintained subglacial ferrous "ocean".
    Mikucki JA; Pearson A; Johnston DT; Turchyn AV; Farquhar J; Schrag DP; Anbar AD; Priscu JC; Lee PA
    Science; 2009 Apr; 324(5925):397-400. PubMed ID: 19372431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.