These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31591528)

  • 1. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry.
    Laskowski FAL; Oener SZ; Nellist MR; Gordon AM; Bain DC; Fehrs JL; Boettcher SW
    Nat Mater; 2020 Jan; 19(1):69-76. PubMed ID: 31591528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Measurements of Charge Transfer at Cocatalyst/Semiconductor Interfaces in BiVO
    Shen M; Kaufman AJ; Huang J; Price C; Boettcher SW
    Nano Lett; 2022 Dec; 22(23):9493-9499. PubMed ID: 36382908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts.
    Hemmerling JR; Mathur A; Linic S
    Acc Chem Res; 2021 Apr; 54(8):1992-2002. PubMed ID: 33794089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite.
    Qiu J; Hajibabaei H; Nellist MR; Laskowski FAL; Hamann TW; Boettcher SW
    ACS Cent Sci; 2017 Sep; 3(9):1015-1025. PubMed ID: 28979943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation.
    Hill JC; Landers AT; Switzer JA
    Nat Mater; 2015 Nov; 14(11):1150-5. PubMed ID: 26366847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single nanoparticle photoelectrochemistry: What is next?
    Wang L; Schmid M; Sambur JB
    J Chem Phys; 2019 Nov; 151(18):180901. PubMed ID: 31731844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the Inhomogeneity of Metal-Insulator-Semiconductor Junctions for Photoelectrochemical Methanol Oxidation.
    Li Y; Ding C; Li Y; Zeng J; Kang C; Chen H; Wang L; He J; Li C
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59403-59412. PubMed ID: 38104346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.
    Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR
    Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Custom plating of nanoscale semiconductor/catalyst junctions for photoelectrochemical water splitting.
    Oh K; de Sagazan O; Léon C; Le Gall S; Loget G
    Nanoscale; 2021 Jan; 13(3):1997-2004. PubMed ID: 33443521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes.
    Lin F; Boettcher SW
    Nat Mater; 2014 Jan; 13(1):81-6. PubMed ID: 24292419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Photovoltage Enhancement in Metal-Insulator Semiconductor Photoelectrodes with Metal Nanoparticles.
    King AJ; Weber AZ; Bell AT
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36380-36391. PubMed ID: 38968444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory and Simulation of Metal-Insulator-Semiconductor (MIS) Photoelectrodes.
    King AJ; Weber AZ; Bell AT
    ACS Appl Mater Interfaces; 2023 May; 15(19):23024-23039. PubMed ID: 37154402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.
    Ping Y; Goddard WA; Galli GA
    J Am Chem Soc; 2015 Apr; 137(16):5264-7. PubMed ID: 25867053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation.
    Digdaya IA; Adhyaksa GWP; Trześniewski BJ; Garnett EC; Smith WA
    Nat Commun; 2017 Jun; 8():15968. PubMed ID: 28660883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation.
    Yao T; Chen R; Li J; Han J; Qin W; Wang H; Shi J; Fan F; Li C
    J Am Chem Soc; 2016 Oct; 138(41):13664-13672. PubMed ID: 27653158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes.
    Yang J; Cooper JK; Toma FM; Walczak KA; Favaro M; Beeman JW; Hess LH; Wang C; Zhu C; Gul S; Yano J; Kisielowski C; Schwartzberg A; Sharp ID
    Nat Mater; 2017 Mar; 16(3):335-341. PubMed ID: 27820814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.