BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31591609)

  • 1. A facile method for the synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment.
    Pandey NK; Chudal L; Phan J; Lin L; Johnson O; Xing M; Liu JP; Li H; Huang X; Shu Y; Chen W
    J Mater Chem B; 2019 Nov; 7(42):6630-6642. PubMed ID: 31591609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of copper-cysteamine nanoparticles as a new photosensitizer for anti-hepatocellular carcinoma.
    Huang X; Wan F; Ma L; Phan JB; Lim RX; Li C; Chen J; Deng J; Li Y; Chen W; He M
    Cancer Biol Ther; 2019; 20(6):812-825. PubMed ID: 30727796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Modality for Cancer Treatment--Nanoparticle Mediated Microwave Induced Photodynamic Therapy.
    Yao M; Ma L; Li L; Zhang J; Lim Rx; Chen W; Zhang Y
    J Biomed Nanotechnol; 2016 Oct; 12(10):1835-51. PubMed ID: 29359896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new X-ray activated nanoparticle photosensitizer for cancer treatment.
    Ma L; Zou X; Chen W
    J Biomed Nanotechnol; 2014 Aug; 10(8):1501-8. PubMed ID: 25016650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Copper Cysteamine Nanoparticles as a New Type of Radiosensitiers for Colorectal Carcinoma Treatment.
    Liu Z; Xiong L; Ouyang G; Ma L; Sahi S; Wang K; Lin L; Huang H; Miao X; Chen W; Wen Y
    Sci Rep; 2017 Aug; 7(1):9290. PubMed ID: 28839163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of Copper-Cysteamine Nanoparticles as a New Type of Agents for Antimicrobial Photodynamic Inactivation.
    Huang L; Ma L; Xuan W; Zhen X; Zheng H; Chen W; Hamblin MR
    J Biomed Nanotechnol; 2019 Oct; 15(10):2142-2148. PubMed ID: 31462378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A powerful combination of copper-cysteamine nanoparticles with potassium iodide for bacterial destruction.
    Zhen X; Chudal L; Pandey NK; Phan J; Ran X; Amador E; Huang X; Johnson O; Ran Y; Chen W; Hamblin MR; Huang L
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110659. PubMed ID: 32204087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors.
    Shrestha S; Wu J; Sah B; Vanasse A; Cooper LN; Ma L; Li G; Zheng H; Chen W; Antosh MP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16823-16828. PubMed ID: 31371494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-stabilized gold nanoclusters for PDT: ROS and singlet oxygen generation.
    Poderys V; Jarockyte G; Bagdonas S; Karabanovas V; Rotomskis R
    J Photochem Photobiol B; 2020 Mar; 204():111802. PubMed ID: 31981990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of Disulfiram and Copper-Cysteamine Nanoparticles for an Enhanced Antitumor Effect on Esophageal Cancer.
    Chang Y; Wu F; Pandey NK; Chudal L; Xing M; Zhang X; Nguyen L; Liu X; Liu JP; Chen W; Pan Z
    ACS Appl Bio Mater; 2020 Oct; 3(10):7147-7157. PubMed ID: 34179726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-Cysteamine Nanoparticles as a Heterogeneous Fenton-Like Catalyst for Highly Selective Cancer Treatment.
    Chudal L; Pandey NK; Phan J; Johnson O; Lin L; Yu H; Shu Y; Huang Z; Xing M; Liu JP; Chen ML; Chen W
    ACS Appl Bio Mater; 2020 Mar; 3(3):1804-1814. PubMed ID: 35021670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting.
    Chen X; Liu J; Li Y; Pandey NK; Chen T; Wang L; Amador EH; Chen W; Liu F; Xiao E; Chen W
    Bioact Mater; 2022 Jan; 7():504-514. PubMed ID: 34466749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-cysteamine nanoparticle-mediated microwave dynamic therapy improves cancer treatment with induction of ferroptosis.
    Zhou H; Liu Z; Zhang Z; Pandey NK; Amador E; Nguyen W; Chudal L; Xiong L; Chen W; Wen Y
    Bioact Mater; 2023 Jun; 24():322-330. PubMed ID: 36632507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper(II) as an efficient scavenger of singlet molecular oxygen.
    Joshi PC
    Indian J Biochem Biophys; 1998 Aug; 35(4):208-15. PubMed ID: 9854900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H
    Ma B; Wang S; Liu F; Zhang S; Duan J; Li Z; Kong Y; Sang Y; Liu H; Bu W; Li L
    J Am Chem Soc; 2019 Jan; 141(2):849-857. PubMed ID: 30541274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy.
    Guo Z; Zhou X; Hou C; Ding Z; Wen C; Zhang LJ; Jiang BP; Shen XC
    Biomater Sci; 2019 Aug; 7(9):3886-3897. PubMed ID: 31313766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The two isomers of a cyclometallated palladium sensitizer show different photodynamic properties in cancer cells.
    Zhou XQ; Busemann A; Meijer MS; Siegler MA; Bonnet S
    Chem Commun (Camb); 2019 Apr; 55(32):4695-4698. PubMed ID: 30942201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy.
    Wang P; Liang C; Zhu J; Yang N; Jiao A; Wang W; Song X; Dong X
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41140-41147. PubMed ID: 31603650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensitizing potential of ciprofloxacin at ambient level of UV radiation.
    Agrawal N; Ray RS; Farooq M; Pant AB; Hans RK
    Photochem Photobiol; 2007; 83(5):1226-36. PubMed ID: 17880519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy.
    Jing Y; Xu Q; Chen M; Shao X
    Bioorg Med Chem; 2019 Jun; 27(11):2201-2208. PubMed ID: 31040051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.