These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31591677)

  • 21. A potential therapeutic target for regulating osteoporosis via suppression of osteoclast differentiation.
    Sun Q; Zhang B; Zhu W; Wei W; Ma J; Tay FR
    J Dent; 2019 Mar; 82():91-97. PubMed ID: 30716449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Multifaceted Osteoclast; Far and Beyond Bone Resorption.
    Drissi H; Sanjay A
    J Cell Biochem; 2016 Aug; 117(8):1753-6. PubMed ID: 27019318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis.
    Zhao W; Shen G; Ren H; Liang D; Yu X; Zhang Z; Huang J; Qiu T; Tang J; Shang Q; Yu P; Wu Z; Jiang X
    J Cell Physiol; 2018 Dec; 233(12):9191-9208. PubMed ID: 30078225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis.
    Gao Y; Ge W
    Cell Death Dis; 2018 Jan; 9(2):33. PubMed ID: 29348610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The expression and function of microRNAs in bone homeostasis.
    Pi C; Li YP; Zhou X; Gao B
    Front Biosci (Landmark Ed); 2015 Jan; 20(1):119-38. PubMed ID: 25553443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNAs in Bone Balance and Osteoporosis.
    Chen J; Qiu M; Dou C; Cao Z; Dong S
    Drug Dev Res; 2015 Aug; 76(5):235-45. PubMed ID: 26218893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling.
    Zhu S; Yao F; Qiu H; Zhang G; Xu H; Xu J
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):469-480. PubMed ID: 28795526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strontium substitution in apatitic CaP cements effectively attenuates osteoclastic resorption but does not inhibit osteoclastogenesis.
    Schumacher M; Wagner AS; Kokesch-Himmelreich J; Bernhardt A; Rohnke M; Wenisch S; Gelinsky M
    Acta Biomater; 2016 Jun; 37():184-94. PubMed ID: 27084107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoclastogenesis and osteoclast activation in dialysis-related amyloid osteopathy.
    Kazama JJ; Maruyama H; Gejyo F
    Am J Kidney Dis; 2001 Oct; 38(4 Suppl 1):S156-60. PubMed ID: 11576944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miRNAs in osteoclast biology.
    Weivoda MM; Lee SK; Monroe DG
    Bone; 2021 Feb; 143():115757. PubMed ID: 33212320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The emerging role of Hippo signaling pathway in regulating osteoclast formation.
    Yang W; Han W; Qin A; Wang Z; Xu J; Qian Y
    J Cell Physiol; 2018 Jun; 233(6):4606-4617. PubMed ID: 29219182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation.
    de la Rica L; García-Gómez A; Comet NR; Rodríguez-Ubreva J; Ciudad L; Vento-Tormo R; Company C; Álvarez-Errico D; García M; Gómez-Vaquero C; Ballestar E
    Genome Biol; 2015 Jan; 16(1):2. PubMed ID: 25601191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging treatment approaches for myeloma-related bone disease.
    Gavriatopoulou M; Dimopoulos MA; Kastritis E; Terpos E
    Expert Rev Hematol; 2017 Mar; 10(3):217-228. PubMed ID: 28092987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity.
    Conaway HH; Henning P; Lie A; Tuckermann J; Lerner UH
    Bone; 2016 Dec; 93():43-54. PubMed ID: 27596806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bulleyaconitine A prevents Ti particle-induced osteolysis via suppressing NF-κB signal pathway during osteoclastogenesis and osteoblastogenesis.
    Zhang L; Feng M; Li Z; Zhu M; Fan Y; Chu B; Yuan C; Chen L; Lv H; Hong Z; Hong D
    J Cell Physiol; 2018 Sep; 233(9):7067-7079. PubMed ID: 29388671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Involvement of Long Non-Coding RNAs in Bone.
    Aurilia C; Donati S; Palmini G; Miglietta F; Iantomasi T; Brandi ML
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast.
    Hong SE; Lee J; Seo DH; In Lee H; Ri Park D; Lee GR; Jo YJ; Kim N; Kwon M; Shon H; Kyoung Seo E; Kim HS; Young Lee S; Jeong W
    Free Radic Biol Med; 2017 Nov; 112():191-199. PubMed ID: 28774817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis.
    Sun M; Zhou X; Chen L; Huang S; Leung V; Wu N; Pan H; Zhen W; Lu W; Peng S
    Biomed Res Int; 2016; 2016():1652417. PubMed ID: 27073801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNAs and post-transcriptional regulation of skeletal development.
    Gámez B; Rodriguez-Carballo E; Ventura F
    J Mol Endocrinol; 2014 Jun; 52(3):R179-97. PubMed ID: 24523514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artesunate inhibits RANKL-induced osteoclastogenesis and bone resorption in vitro and prevents LPS-induced bone loss in vivo.
    Wei CM; Liu Q; Song FM; Lin XX; Su YJ; Xu J; Huang L; Zong SH; Zhao JM
    J Cell Physiol; 2018 Jan; 233(1):476-485. PubMed ID: 28294321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.