BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31591679)

  • 21. Personalized Integrated Network Modeling of the Cancer Proteome Atlas.
    Ha MJ; Banerjee S; Akbani R; Liang H; Mills GB; Do KA; Baladandayuthapani V
    Sci Rep; 2018 Oct; 8(1):14924. PubMed ID: 30297783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
    Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S
    J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepPep: Deep proteome inference from peptide profiles.
    Kim M; Eetemadi A; Tagkopoulos I
    PLoS Comput Biol; 2017 Sep; 13(9):e1005661. PubMed ID: 28873403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints.
    Wang J; Lu CH; Liu JX; Dai LY; Kong XZ
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):718. PubMed ID: 31888442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular characterization of breast cancer cell lines through multiple omic approaches.
    Smith SE; Mellor P; Ward AK; Kendall S; McDonald M; Vizeacoumar FS; Vizeacoumar FJ; Napper S; Anderson DH
    Breast Cancer Res; 2017 Jun; 19(1):65. PubMed ID: 28583138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model based on GA and DNN for prediction of mRNA-Smad7 expression regulated by miRNAs in breast cancer.
    Manzanarez-Ozuna E; Flores DL; Gutiérrez-López E; Cervantes D; Juárez P
    Theor Biol Med Model; 2018 Dec; 15(1):24. PubMed ID: 30594253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multipronged quantitative proteomics reveals serum proteome alterations in breast cancer intrinsic subtypes.
    Gajbhiye A; Dabhi R; Taunk K; Jagadeeshaprasad MG; RoyChoudhury S; Mane A; Bayatigeri S; Chaudhury K; Santra MK; Rapole S
    J Proteomics; 2017 Jun; 163():1-13. PubMed ID: 28495502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oncoproteomics: Trials and tribulations.
    Zhou L; Li Q; Wang J; Huang C; Nice EC
    Proteomics Clin Appl; 2016 Apr; 10(4):516-31. PubMed ID: 26518147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel approach for clustering proteomics data using Bayesian fast Fourier transform.
    Bensmail H; Golek J; Moody MM; Semmes JO; Haoudi A
    Bioinformatics; 2005 May; 21(10):2210-24. PubMed ID: 15769836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted Proteomics Driven Verification of Biomarker Candidates Associated with Breast Cancer Aggressiveness.
    Procházková I; Lenčo J; Bouchal P
    Methods Mol Biol; 2018; 1788():177-184. PubMed ID: 29196895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas.
    Zhao W; Yang J; Sun Y; Li C; Wu W; Jin L; Yang Z; Ni B; Gao P; Wang P; Hua Y; Li M
    Cancer Res; 2018 Dec; 78(24):6881-6889. PubMed ID: 30279243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.
    Cui P; Zhong T; Wang Z; Wang T; Zhao H; Liu C; Lu H
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2274-2283. PubMed ID: 29241666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
    Al-Antari MA; Al-Masni MA; Kim TS
    Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine.
    Liang Z; Liu J; Ou A; Zhang H; Li Z; Huang JX
    Comput Methods Programs Biomed; 2019 Jun; 174():17-23. PubMed ID: 29801696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.
    Young JD; Cai C; Lu X
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):381. PubMed ID: 28984190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders.
    Smolander J; Dehmer M; Emmert-Streib F
    FEBS Open Bio; 2019 Jul; 9(7):1232-1248. PubMed ID: 31074948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bagging and deep learning in optimal individualized treatment rules.
    Mi X; Zou F; Zhu R
    Biometrics; 2019 Jun; 75(2):674-684. PubMed ID: 30365175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspective.
    Zhang S; Bamakan SMH; Qu Q; Li S
    IEEE Rev Biomed Eng; 2019; 12():194-208. PubMed ID: 30106692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis.
    Huang S; Chong N; Lewis NE; Jia W; Xie G; Garmire LX
    Genome Med; 2016 Mar; 8(1):34. PubMed ID: 27036109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.