BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31591679)

  • 41. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Representation learning for mammography mass lesion classification with convolutional neural networks.
    Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA
    Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A dropout-regularized classifier development approach optimized for precision medicine test discovery from omics data.
    Roder J; Oliveira C; Net L; Tsypin M; Linstid B; Roder H
    BMC Bioinformatics; 2019 Jun; 20(1):325. PubMed ID: 31196002
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Advanced Deep Learning Approach for Ki-67 Stained Hotspot Detection and Proliferation Rate Scoring for Prognostic Evaluation of Breast Cancer.
    Saha M; Chakraborty C; Arun I; Ahmed R; Chatterjee S
    Sci Rep; 2017 Jun; 7(1):3213. PubMed ID: 28607456
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel feature ranking method for prediction of cancer stages using proteomics data.
    Saghapour E; Kermani S; Sehhati M
    PLoS One; 2017; 12(9):e0184203. PubMed ID: 28934234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MuDeRN: Multi-category classification of breast histopathological image using deep residual networks.
    Gandomkar Z; Brennan PC; Mello-Thoms C
    Artif Intell Med; 2018 Jun; 88():14-24. PubMed ID: 29705552
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm.
    Jeyaraj PR; Samuel Nadar ER
    J Cancer Res Clin Oncol; 2019 Apr; 145(4):829-837. PubMed ID: 30603908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Hopes and pitfalls of the molecular classification of breast cancer].
    Ryška A; Hovorková E; Sobande F; Rozkoš T; Laco J; Hornychová H
    Cesk Patol; 2015; 51(1):26-32. PubMed ID: 25671359
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes.
    Chen L; Zeng T; Pan X; Zhang YH; Huang T; Cai YD
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BLASSO: integration of biological knowledge into a regularized linear model.
    Urda D; Aragón F; Bautista R; Franco L; Veredas FJ; Claros MG; Jerez JM
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):94. PubMed ID: 30458775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in oncoproteomics.
    Jain KK
    Curr Opin Mol Ther; 2002 Jun; 4(3):203-9. PubMed ID: 12139304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning.
    Li S; Wei J; Chan HP; Helvie MA; Roubidoux MA; Lu Y; Zhou C; Hadjiiski LM; Samala RK
    Phys Med Biol; 2018 Jan; 63(2):025005. PubMed ID: 29210358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The bait compatibility index: computational bait selection for interaction proteomics experiments.
    Saha S; Kaur P; Ewing RM
    J Proteome Res; 2010 Oct; 9(10):4972-81. PubMed ID: 20731387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated proteo-genomic approach for early diagnosis and prognosis of cancer.
    Shukla HD; Mahmood J; Vujaskovic Z
    Cancer Lett; 2015 Dec; 369(1):28-36. PubMed ID: 26276717
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CrossLink: a novel method for cross-condition classification of cancer subtypes.
    Ma C; Sastry KS; Flore M; Gehani S; Al-Bozom I; Feng Y; Serpedin E; Chouchane L; Chen Y; Huang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):549. PubMed ID: 27556419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application.
    Zhan X; Long Y; Lu M
    J Proteomics; 2018 Sep; 188():30-40. PubMed ID: 28851587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.