These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes. Sasaki T; Tsuchiya Y; Ariyoshi M; Ryan PR; Furuichi T; Yamamoto Y Plant Cell Physiol; 2014 Dec; 55(12):2126-38. PubMed ID: 25311199 [TBL] [Abstract][Full Text] [Related]
8. Picrotoxin Delineates Different Transport Configurations for Malate and γ Aminobutyric Acid through TaALMT1. Ramesh SA; Long Y; Dashtbani-Roozbehani A; Gilliham M; Brown MH; Tyerman SD Biology (Basel); 2022 Aug; 11(8):. PubMed ID: 36009788 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Ligaba A; Kochian L; Piñeros M Plant J; 2009 Nov; 60(3):411-23. PubMed ID: 19563436 [TBL] [Abstract][Full Text] [Related]
10. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Furuichi T; Sasaki T; Tsuchiya Y; Ryan PR; Delhaize E; Yamamoto Y Plant J; 2010 Oct; 64(1):47-55. PubMed ID: 20663086 [TBL] [Abstract][Full Text] [Related]
11. GAT1 (GABA:Na+:Cl-) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. Lu CC; Hilgemann DW J Gen Physiol; 1999 Sep; 114(3):429-44. PubMed ID: 10469733 [TBL] [Abstract][Full Text] [Related]
12. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations. Sasaki T; Tsuchiya Y; Ariyoshi M; Ryan PR; Yamamoto Y Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1427-35. PubMed ID: 27039280 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Zhang WH; Ryan PR; Sasaki T; Yamamoto Y; Sullivan W; Tyerman SD Plant Cell Physiol; 2008 Sep; 49(9):1316-30. PubMed ID: 18676980 [TBL] [Abstract][Full Text] [Related]
16. γ-Aminobutyric acid (GABA) signalling in plants. Ramesh SA; Tyerman SD; Gilliham M; Xu B Cell Mol Life Sci; 2017 May; 74(9):1577-1603. PubMed ID: 27838745 [TBL] [Abstract][Full Text] [Related]
17. Multiple ALMT subunits combine to form functional anion channels: A case study for rice ALMT7. Zhou H; Hu Z; Luo Y; Feng C; Long Y Front Plant Sci; 2022; 13():1012578. PubMed ID: 36452104 [TBL] [Abstract][Full Text] [Related]
18. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9. Zhang J; Martinoia E; De Angeli A J Biol Chem; 2014 Sep; 289(37):25581-9. PubMed ID: 25028514 [TBL] [Abstract][Full Text] [Related]
19. Photoaffinity labeling with a neuroactive steroid analogue. 6-azi-pregnanolone labels voltage-dependent anion channel-1 in rat brain. Darbandi-Tonkabon R; Hastings WR; Zeng CM; Akk G; Manion BD; Bracamontes JR; Steinbach JH; Mennerick SJ; Covey DF; Evers AS J Biol Chem; 2003 Apr; 278(15):13196-206. PubMed ID: 12560326 [TBL] [Abstract][Full Text] [Related]
20. The emerging role of GABA as a transport regulator and physiological signal. Xu B; Sai N; Gilliham M Plant Physiol; 2021 Dec; 187(4):2005-2016. PubMed ID: 35235673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]