BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 31591751)

  • 1. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2.
    Fischer K; Rieblinger B; Hein R; Sfriso R; Zuber J; Fischer A; Klinger B; Liang W; Flisikowski K; Kurome M; Zakhartchenko V; Kessler B; Wolf E; Rieben R; Schwinzer R; Kind A; Schnieke A
    Xenotransplantation; 2020 Jan; 27(1):e12560. PubMed ID: 31591751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humoral Reactivity of Renal Transplant-Waitlisted Patients to Cells From GGTA1/CMAH/B4GalNT2, and SLA Class I Knockout Pigs.
    Martens GR; Reyes LM; Li P; Butler JR; Ladowski JM; Estrada JL; Sidner RA; Eckhoff DE; Tector M; Tector AJ
    Transplantation; 2017 Apr; 101(4):e86-e92. PubMed ID: 28114170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation.
    Butler JR; Martens GR; Estrada JL; Reyes LM; Ladowski JM; Galli C; Perota A; Cunningham CM; Tector M; Joseph Tector A
    Transgenic Res; 2016 Oct; 25(5):751-9. PubMed ID: 27100221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocytes from GGTA1/CMAH knockout pigs: implications for xenotransfusion and testing in non-human primates.
    Wang ZY; Burlak C; Estrada JL; Li P; Tector MF; Tector AJ
    Xenotransplantation; 2014; 21(4):376-84. PubMed ID: 24986655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses.
    Li P; Walsh JR; Lopez K; Isidan A; Zhang W; Chen AM; Goggins WC; Higgins NG; Liu J; Brutkiewicz RR; Smith LJ; Hara H; Cooper DKC; Ekser B
    Sci Rep; 2021 Jun; 11(1):13131. PubMed ID: 34162938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis.
    Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Otoi T
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes.
    Estrada JL; Martens G; Li P; Adams A; Newell KA; Ford ML; Butler JR; Sidner R; Tector M; Tector J
    Xenotransplantation; 2015; 22(3):194-202. PubMed ID: 25728481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficacious Transgenic Strategy for Triple Knockout of Xeno-Reactive Antigen Genes GGTA1, CMAH, and B4GALNT2 from Jeju Native Pigs.
    Yoon S; Lee S; Park C; Choi H; Yoo M; Lee SC; Hyun CH; Kim N; Kang T; Son E; Ghosh M; Son YO; Hur CG
    Vaccines (Basel); 2022 Sep; 10(9):. PubMed ID: 36146581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing Porcine CMAH and GGTA1 Genes Significantly Reduces Xenogeneic Consumption of Human Platelets by Porcine Livers.
    Butler JR; Paris LL; Blankenship RL; Sidner RA; Martens GR; Ladowski JM; Li P; Estrada JL; Tector M; Tector AJ
    Transplantation; 2016 Mar; 100(3):571-6. PubMed ID: 26906939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The desirable donor pig to eliminate all xenoreactive antigens.
    Ladowski J; Martens G; Estrada J; Tector M; Tector J
    Xenotransplantation; 2019 Jul; 26(4):e12504. PubMed ID: 30825348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production of multi-modified pigs for xenotransplantation by 'combineering', gene stacking and gene editing.
    Fischer K; Kraner-Scheiber S; Petersen B; Rieblinger B; Buermann A; Flisikowska T; Flisikowski K; Christan S; Edlinger M; Baars W; Kurome M; Zakhartchenko V; Kessler B; Plotzki E; Szczerbal I; Switonski M; Denner J; Wolf E; Schwinzer R; Niemann H; Kind A; Schnieke A
    Sci Rep; 2016 Jun; 6():29081. PubMed ID: 27353424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model.
    Ko N; Shim J; Kim HJ; Lee Y; Park JK; Kwak K; Lee JW; Jin DI; Kim H; Choi K
    Sci Rep; 2022 Jun; 12(1):9611. PubMed ID: 35688851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of GGTA1-/-β2M-/-CIITA-/- Pigs Using CRISPR/Cas9 Technology to Alleviate Xenogeneic Immune Reactions.
    Fu R; Fang M; Xu K; Ren J; Zou J; Su L; Chen X; An P; Yu D; Ka M; Hai T; Li Z; Li W; Yang Y; Zhou Q; Hu Z
    Transplantation; 2020 Aug; 104(8):1566-1573. PubMed ID: 32732833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human anti-α-fucose antibodies are xenoreactive toward GGTA1/CMAH knockout pigs.
    Burlak C; Taylor RT; Wang ZY; Tector AJ
    Xenotransplantation; 2020 Nov; 27(6):e12629. PubMed ID: 32697003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen.
    Byrne GW; Du Z; Stalboerger P; Kogelberg H; McGregor CG
    Xenotransplantation; 2014; 21(6):543-54. PubMed ID: 25176027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection.
    Butler JR; Skill NJ; Priestman DL; Platt FM; Li P; Estrada JL; Martens GR; Ladowski JM; Tector M; Tector AJ
    Xenotransplantation; 2016 Mar; 23(2):106-16. PubMed ID: 27106872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunogenicity of Renal Microvascular Endothelial Cells From Genetically Modified Pigs.
    Wang ZY; Li P; Butler JR; Blankenship RL; Downey SM; Montgomery JB; Nagai S; Estrada JL; Tector MF; Tector AJ
    Transplantation; 2016 Mar; 100(3):533-7. PubMed ID: 26906938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source.
    Tritschler H; Fischer K; Seissler J; Fiedler J; Halbgebauer R; Huber-Lang M; Schnieke A; Brenner RE
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.