BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31591806)

  • 1. A Low-Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodium-Ion Storage.
    Song T; Yao W; Kiadkhunthod P; Zheng Y; Wu N; Zhou X; Tunmee S; Sattayaporn S; Tang Y
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):740-745. PubMed ID: 31591806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox.
    Yao W; Armstrong AR; Zhou X; Sougrati MT; Kidkhunthod P; Tunmee S; Sun C; Sattayaporn S; Lightfoot P; Ji B; Jiang C; Wu N; Tang Y; Cheng HM
    Nat Commun; 2019 Aug; 10(1):3483. PubMed ID: 31375663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries.
    Yang W; Liu Q; Zhao Y; Mu D; Tan G; Gao H; Li L; Chen R; Wu F
    Small Methods; 2022 Sep; 6(9):e2200555. PubMed ID: 35780504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyanionic Cathode Materials for Practical Na-Ion Batteries toward High Energy Density and Long Cycle Life.
    Xu C; Zhao J; Yang C; Hu YS
    ACS Cent Sci; 2023 Sep; 9(9):1721-1736. PubMed ID: 37780368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na
    Dwibedi D; Gond R; Dayamani A; Araujo RB; Chakraborty S; Ahuja R; Barpanda P
    Dalton Trans; 2016 Dec; 46(1):55-63. PubMed ID: 27883133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries.
    Niu YB; Guo YJ; Yin YX; Zhang SY; Wang T; Wang P; Xin S; Guo YG
    Adv Mater; 2020 Aug; 32(33):e2001419. PubMed ID: 32627877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the structural chemistry in Na
    Zhao A; Ji F; Liu C; Zhang S; Chen K; Chen W; Feng X; Zhong F; Ai X; Yang H; Fang Y; Cao Y
    Sci Bull (Beijing); 2023 Sep; 68(17):1894-1903. PubMed ID: 37544880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Containing Na
    Meng QY; Shao JC; Dou XR; Chi HZ
    Small; 2024 Feb; ():e2308483. PubMed ID: 38329171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K
    Pramanik A; Manche AG; Sougrati MT; Chadwick AV; Lightfoot P; Armstrong AR
    Chem Mater; 2023 Mar; 35(6):2600-2611. PubMed ID: 37008407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pyrazine-Based Polymer for Fast-Charge Batteries.
    Mao M; Luo C; Pollard TP; Hou S; Gao T; Fan X; Cui C; Yue J; Tong Y; Yang G; Deng T; Zhang M; Ma J; Suo L; Borodin O; Wang C
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17820-17826. PubMed ID: 31571354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.
    Senthilkumar ST; Bae H; Han J; Kim Y
    Angew Chem Int Ed Engl; 2018 May; 57(19):5335-5339. PubMed ID: 29516600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Oxygen Activity in the High Energy P2-Type Na
    Ma C; Alvarado J; Xu J; Clément RJ; Kodur M; Tong W; Grey CP; Meng YS
    J Am Chem Soc; 2017 Apr; 139(13):4835-4845. PubMed ID: 28271898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current computational trends in polyanionic cathode materials for Li and Na batteries.
    Chakraborty S; Banerjee A; Watcharatharapong T; Araujo RB; Ahuja R
    J Phys Condens Matter; 2018 Jul; 30(28):283003. PubMed ID: 29932053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed Polyanionic Compounds as Positive Electrodes for Low-Cost Electrochemical Energy Storage.
    Lan Y; Yao W; He X; Song T; Tang Y
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9255-9262. PubMed ID: 31976627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries.
    Xu C; Fu Q; Hua W; Chen Z; Zhang Q; Bai Y; Yang C; Zhao J; Hu YS
    ACS Nano; 2024 Jul; ():. PubMed ID: 38965054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights.
    Dwibedi D; Ling CD; Araujo RB; Chakraborty S; Duraisamy S; Munichandraiah N; Ahuja R; Barpanda P
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6982-91. PubMed ID: 26931644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries.
    Liu J; Chen Z; Chen S; Zhang B; Wang J; Wang H; Tian B; Chen M; Fan X; Huang Y; Sum TC; Lin J; Shen ZX
    ACS Nano; 2017 Jul; 11(7):6911-6920. PubMed ID: 28494158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lifespan Polyanionic Organic Cathodes for Highly Efficient Organic Sodium-ion Batteries.
    Li D; Tang W; Yong CY; Tan ZH; Wang C; Fan C
    ChemSusChem; 2020 Apr; 13(8):1991-1996. PubMed ID: 32057185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stable and High Rate-Performance Na-Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode.
    Tang W; Liang R; Li D; Yu Q; Hu J; Cao B; Fan C
    ChemSusChem; 2019 May; 12(10):2181-2185. PubMed ID: 30896083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.