These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31592349)

  • 1. Physiological and anatomical investigation of the auditory brainstem in the Fat-tailed dunnart (
    Garrett A; Lannigan V; Yates NJ; Rodger J; Mulders W
    PeerJ; 2019; 7():e7773. PubMed ID: 31592349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal projections in two Australian polyprotodont marsupials: kowari, Dasyuroides byrnei, and fat-tailed dunnart, Sminthopsis crassicaudata (Dasyuridae).
    Haight JR; Sanderson KJ
    Brain Behav Evol; 1988; 31(2):96-110. PubMed ID: 3349353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development in a marsupial model, the fat-tailed dunnart (Sminthopsis crassicaudata; Dasyuromorphia: Dasyuridae).
    Cook LE; Newton AH; Hipsley CA; Pask AJ
    Commun Biol; 2021 Sep; 4(1):1028. PubMed ID: 34475507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and tissue distribution of Crh and Pomc mRNA in the fat-tailed dunnart (Sminthopsis crassicaudata), an Australian marsupial.
    Noy EB; Scott MK; Grommen SVH; Robert KA; De Groef B
    Gene; 2017 Sep; 627():26-31. PubMed ID: 28587847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil.
    Kil J; Kageyama GH; Semple MN; Kitzes LM
    J Comp Neurol; 1995 Mar; 353(3):317-40. PubMed ID: 7751434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart).
    Pires SS; Shand J; Bellingham J; Arrese C; Turton M; Peirson S; Foster RG; Halford S
    Proc Biol Sci; 2007 Nov; 274(1627):2791-9. PubMed ID: 17785267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum.
    Willard FH; Martin GF
    Neuroscience; 1983 Dec; 10(4):1203-32. PubMed ID: 6664491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unique paired retinal vascular pattern in marsupials: structural, functional and evolutionary perspectives based on observations in a range of species.
    McMenamin PG
    Br J Ophthalmol; 2007 Oct; 91(10):1399-405. PubMed ID: 17475712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonergic innervation of the auditory brainstem of the Mexican free-tailed bat, Tadarida brasiliensis.
    Hurley LM; Thompson AM
    J Comp Neurol; 2001 Jun; 435(1):78-88. PubMed ID: 11370012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections of the trapezoid body and the superior olivary complex of the Kangaroo rat (Dipodomys merriami).
    Browner RH; Webster DB
    Brain Behav Evol; 1975; 11(5-6):322-54. PubMed ID: 1192176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison of frequency representation in the auditory brainstem nuclei of the gerbil, Pachyuromys duprasi.
    Müller M
    Exp Brain Res; 1990; 81(1):140-9. PubMed ID: 2394221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive.
    Smith PH; Joris PX; Yin TC
    J Comp Neurol; 1993 May; 331(2):245-60. PubMed ID: 8509501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology.
    Sommer I; Lingenhöhl K; Friauf E
    Exp Brain Res; 1993; 95(2):223-39. PubMed ID: 8224048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (Rattus norvegicus).
    Kelly JB; van Adel BA; Ito M
    J Comp Neurol; 2009 Feb; 512(4):573-93. PubMed ID: 19034907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anatomy of the cochlear nuclei and superior olivary complex of arboreal Australian marsupials.
    Aitkin L
    Brain Behav Evol; 1996; 48(2):103-14. PubMed ID: 8853876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual and nonvisual auditory systems in mammals. Anatomical evidence indicates two kinds of auditory pathways and suggests two kinds of hearing in mammals.
    Harrison JM; Irving R
    Science; 1966 Nov; 154(3750):738-43. PubMed ID: 4958477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal relationship between single unit activity in superior olivary complex and scalp-derived auditory brainstem response in guinea pig.
    Kano Y; Starr A
    Brain Res; 1987 Sep; 419(1-2):262-71. PubMed ID: 3676729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea.
    Kitzes LM; Kageyama GH; Semple MN; Kil J
    J Comp Neurol; 1995 Mar; 353(3):341-63. PubMed ID: 7751435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.