These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31592421)

  • 1. Tuning the Photoresponse of Nano-Heterojunction: Pressure-Induced Inverse Photoconductance in Functionalized WO
    Rahman S; Samanta S; Kuzmin A; Errandonea D; Saqib H; Brewe DL; Kim J; Lu J; Wang L
    Adv Sci (Weinh); 2019 Oct; 6(19):1901132. PubMed ID: 31592421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory.
    Yang Y; Peng X; Kim HS; Kim T; Jeon S; Kang HK; Choi W; Song J; Doh YJ; Yu D
    Nano Lett; 2015 Sep; 15(9):5875-82. PubMed ID: 26226506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles.
    Nakanishi H; Bishop KJ; Kowalczyk B; Nitzan A; Weiss EA; Tretiakov KV; Apodaca MM; Klajn R; Stoddart JF; Grzybowski BA
    Nature; 2009 Jul; 460(7253):371-5. PubMed ID: 19606145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Inverse Photoconductance in Semiconducting Nanowire Films.
    Wang R; Wang JL; Liu T; He Z; Wang H; Liu JW; Yu SH
    Adv Mater; 2022 Sep; 34(36):e2204698. PubMed ID: 35854411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Peptide Nanofibers with Voltage-Regulated Inverse Photoconductance.
    Shi H; Li M; Shi J; Zhang D; Fan Z; Zhang M; Liu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1057-1064. PubMed ID: 33378176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redistribution of native defects and photoconductivity in ZnO under pressure.
    Das PP; Samanta S; Wang L; Kim J; Vogt T; Devi PS; Lee Y
    RSC Adv; 2019 Jan; 9(8):4303-4313. PubMed ID: 35520174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoconductivity Switching in MoTe
    Kim HJ; Lee KJ; Park J; Shin GH; Park H; Yu K; Choi SY
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38563-38569. PubMed ID: 32846468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition.
    Huang K; Zhang Q
    Nanoscale Res Lett; 2011 Dec; 6(1):52. PubMed ID: 27502674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ construction of WO
    Li S; Hu S; Jiang W; Zhang J; Xu K; Wang Z
    J Colloid Interface Sci; 2019 Nov; 556():335-344. PubMed ID: 31465964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge Transport Phenomena in Heterojunction Photocatalysts: The WO
    Iqbal A; Kafizas A; Sotelo-Vazquez C; Wilson R; Ling M; Taylor A; Blackman C; Bevan K; Parkin I; Quesada-Cabrera R
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9781-9793. PubMed ID: 33595275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of Persistent Photoconductivity of Rubrene Crystals using Gate-Tunable Rubrene/Bi
    Pei K; Wang F; Han W; Yang S; Liu K; Liu K; Li H; Zhai T
    Small; 2020 Aug; 16(32):e2002312. PubMed ID: 32627927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-driven Oxygen Vacancies Extends Charge Carrier Lifetime for Efficient Solar Water Splitting.
    Sun M; Gao RT; He J; Liu X; Nakajima T; Zhang X; Wang L
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17601-17607. PubMed ID: 34018300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive and Negative Photoconductivity Conversion Induced by H
    Liu Y; Fu P; Yin Y; Peng Y; Yang W; Zhao G; Wang W; Zhou W; Tang D
    Nanoscale Res Lett; 2019 Apr; 14(1):144. PubMed ID: 31016402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CsPbX
    He Q; Chen G; Wang Y; Liu X; Xu D; Xu X; Liu Y; Bao J; Wang X
    Small; 2021 Jul; 17(28):e2101403. PubMed ID: 34106510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ growth of Fe
    Lin H; Long X; An Y; Yang S
    J Chem Phys; 2020 Jun; 152(21):214704. PubMed ID: 32505145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Z-scheme WO
    Naciri Y; Hsini A; Bouziani A; Tanji K; El Ibrahimi B; Ghazzal MN; Bakiz B; Albourine A; Benlhachemi A; NavĂ­o JA; Li H
    Chemosphere; 2022 Apr; 292():133468. PubMed ID: 34974036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu
    Cheng L; Jiang T; Zhang J
    Sci Total Environ; 2021 Jul; 776():145840. PubMed ID: 33647648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Driven Polymorphic Transition, Emergent Insulator-To-Metal Transition, and Photoconductivity Switching in Violet Phosphorus.
    Li C; Liu K; Jiang D; Yan H; Chen E; Ma Y; Cheng H; Wen T; Yue B; Wang Y
    Small; 2024 Mar; 20(9):e2306758. PubMed ID: 37852946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining negative photoconductivity and resistive switching towards in-memory logic operations.
    Paramanik S; Pal AJ
    Nanoscale; 2023 Mar; 15(10):5001-5010. PubMed ID: 36786743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.