These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31592431)
21. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: Elhabal SF; Ghaffar SA; Hager R; Elzohairy NA; Khalifa MM; Mohie PM; Gad RA; Omar NN; Elkomy MH; Khasawneh MA; Abdelaal N Int J Pharm X; 2023 Dec; 5():100174. PubMed ID: 36908304 [TBL] [Abstract][Full Text] [Related]
22. Adriamycin release from poly(lactide-coglycolide)-polyethylene glycol nanoparticles: synthesis, and in vitro characterization. Davaran S; Rashidi MR; Pourabbas B; Dadashzadeh M; Haghshenas NM Int J Nanomedicine; 2006; 1(4):535-9. PubMed ID: 17722284 [TBL] [Abstract][Full Text] [Related]
23. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide. Graves RA; Ledet GA; Glotser EY; Mitchner DM; Bostanian LA; Mandal TK Eur J Pharm Sci; 2015 Aug; 76():1-9. PubMed ID: 25933716 [TBL] [Abstract][Full Text] [Related]
24. PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan. Emami J; Maghzi P; Hasanzadeh F; Sadeghi H; Mirian M; Rostami M Pharm Dev Technol; 2018 Jan; 23(1):41-54. PubMed ID: 28608760 [TBL] [Abstract][Full Text] [Related]
25. Impact of PEG and PEG-b-PAGE modified PLGA on nanoparticle formation, protein loading and release. Rietscher R; Czaplewska JA; Majdanski TC; Gottschaldt M; Schubert US; Schneider M; Lehr CM Int J Pharm; 2016 Mar; 500(1-2):187-95. PubMed ID: 26784983 [TBL] [Abstract][Full Text] [Related]
26. Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles. Babos G; Biró E; Meiczinger M; Feczkó T Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960820 [TBL] [Abstract][Full Text] [Related]
27. Anti-EGFR-mAb and 5-Fluorouracil Conjugated Polymeric Nanoparticles for Colorectal Cancer. Bhattacharya S Recent Pat Anticancer Drug Discov; 2021; 16(1):84-100. PubMed ID: 33349222 [TBL] [Abstract][Full Text] [Related]
28. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Abd El Hady WE; Mohamed EA; Soliman OAE; El-Sabbagh HM Int J Nanomedicine; 2019; 14():7191-7213. PubMed ID: 31564873 [TBL] [Abstract][Full Text] [Related]
29. Preparation and in vitro evaluation of doxorubicin-loaded Fe₃O₄ magnetic nanoparticles modified with biocompatible copolymers. Akbarzadeh A; Mikaeili H; Zarghami N; Mohammad R; Barkhordari A; Davaran S Int J Nanomedicine; 2012; 7():511-26. PubMed ID: 22334781 [TBL] [Abstract][Full Text] [Related]
30. Predicting the Miscibility and Rigidity of Poly(lactic- Pannuzzo M; Horta BAC; La Rosa C; Decuzzi P Macromolecules; 2020 May; 53(10):3643-3654. PubMed ID: 32831403 [TBL] [Abstract][Full Text] [Related]
31. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. Abelha TF; Neumann PR; Holthof J; Dreiss CA; Alexander C; Green M; Dailey LA J Mater Chem B; 2019 Sep; 7(33):5115-5124. PubMed ID: 31363720 [TBL] [Abstract][Full Text] [Related]
32. Multifunctional nanoplatform based on star-shaped copolymer for liver cancer targeting therapy. Gong X; Zheng Y; He G; Chen K; Zeng X; Chen Z Drug Deliv; 2019 Dec; 26(1):595-603. PubMed ID: 31195837 [TBL] [Abstract][Full Text] [Related]
33. Preparation, evaluation, and Pan X; Liu S; Ju L; Xi J; He R; Zhao Y; Zhuang R; Huang J Drug Dev Ind Pharm; 2020 Nov; 46(11):1889-1897. PubMed ID: 32975456 [TBL] [Abstract][Full Text] [Related]
34. Preparation, Physicochemical Characterization and Anti-Fungal Evaluation of Amphotericin B-Loaded PLGA-PEG-Galactosamine Nanoparticles. Mohammadi G; Fathian-Kolahkaj M; Mohammadi P; Adibkia K; Fattahi A Adv Pharm Bull; 2021 Feb; 11(2):311-317. PubMed ID: 33880353 [No Abstract] [Full Text] [Related]
35. Study on the preparation and activity of intelligent response poly(lactic-co-glycolic acid)-ss-polyethylene glycol copolymer micelles. Wang S; Xie L; Liu Y; Yang Q; Jia W; Zhao D; Zhao X J Biomater Appl; 2022 Aug; 37(2):259-274. PubMed ID: 35533369 [TBL] [Abstract][Full Text] [Related]
36. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery. Ma G; Zhang C; Zhang L; Sun H; Song C; Wang C; Kong D J Mater Sci Mater Med; 2016 Jan; 27(1):17. PubMed ID: 26676863 [TBL] [Abstract][Full Text] [Related]
37. Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. Duvvuri S; Janoria KG; Pal D; Mitra AK J Ocul Pharmacol Ther; 2007 Jun; 23(3):264-74. PubMed ID: 17593010 [TBL] [Abstract][Full Text] [Related]
38. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Chen S; Singh J Int J Pharm; 2005 May; 295(1-2):183-90. PubMed ID: 15848003 [TBL] [Abstract][Full Text] [Related]
39. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. Moraes Moreira Carraro TC; Altmeyer C; Maissar Khalil N; Mara Mainardes R J Mycol Med; 2017 Dec; 27(4):519-529. PubMed ID: 28797532 [TBL] [Abstract][Full Text] [Related]
40. Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation. Amjadi I; Rabiee M; Hosseini MS Iran J Pharm Res; 2013; 12(4):623-34. PubMed ID: 24523742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]