These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31592451)

  • 1. Preventing Hydrate Adhesion with Magnetic Slippery Surfaces.
    Ragunathan T; Xu X; Shuhili JA; Wood CD
    ACS Omega; 2019 Oct; 4(14):15789-15797. PubMed ID: 31592451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiscaling Magnetic Slippery Surfaces.
    Masoudi A; Irajizad P; Farokhnia N; Kashyap V; Ghasemi H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):21025-21033. PubMed ID: 28562001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.
    Sojoudi H; Walsh MR; Gleason KK; McKinley GH
    Langmuir; 2015 Jun; 31(22):6186-96. PubMed ID: 25927419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Amphiphobic Coating toward Ultralow Interfacial Adhesion of Hydrates.
    Zhang W; Fan S; Li G; Wang Y; Lang X
    Langmuir; 2023 Mar; 39(11):4082-4090. PubMed ID: 36880180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Electric Field on Gas Hydrate Nucleation Kinetics: Evidence for the Enhanced Kinetics of Hydrate Nucleation by Negatively Charged Clay Surfaces.
    Park T; Kwon TH
    Environ Sci Technol; 2018 Mar; 52(5):3267-3274. PubMed ID: 29397706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion force between cyclopentane hydrates and solid surface materials.
    Aspenes G; Dieker LE; Aman ZM; Høiland S; Sum AK; Koh CA; Sloan ED
    J Colloid Interface Sci; 2010 Mar; 343(2):529-36. PubMed ID: 20036368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial mechanical properties of tetrahydrofuran hydrate-solid surfaces: Implications for hydrate management.
    Lin Y; Li T; Liu S; Shi Q; Xu K; Zhang Z; Wu J
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):326-335. PubMed ID: 36162390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Insights into the Effect of the Initial Gas-Liquid Interface on Hydrate Formation by
    Cai J; Lv T; Li XS; Xu CG; von Solms N; Liang X
    ACS Omega; 2021 Dec; 6(51):35467-35475. PubMed ID: 34984278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Ultra-Low Hydrate Adhesion Surfaces by Interfacial Spreading of Water-Immiscible Barrier Films.
    Das A; Farnham TA; Bengaluru Subramanyam S; Varanasi KK
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21496-21502. PubMed ID: 28281747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.
    Smith JD; Meuler AJ; Bralower HL; Venkatesan R; Subramanian S; Cohen RE; McKinley GH; Varanasi KK
    Phys Chem Chem Phys; 2012 May; 14(17):6013-20. PubMed ID: 22441203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.
    Hu S; Koh CA
    Langmuir; 2017 Oct; 33(42):11299-11309. PubMed ID: 28922923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durable Hydrate-phobic Coating with In Situ Self-Replenishing Hydrocarbon Barrier Films for Low Clathrate Hydrate Adhesion.
    Jamil MI; Qian T; Ahmed W; Zhan X; Chen F; Cheng D; Zhang Q
    Langmuir; 2022 Sep; 38(38):11621-11630. PubMed ID: 36107634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on Hydrate Growth at the Oil-Water Interface: In the Presence of Wax and Kinetic Hydrate Inhibitor.
    Song G; Ning Y; Li Y; Wang W
    Langmuir; 2020 Dec; 36(48):14881-14891. PubMed ID: 33216559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling Adhesion Strength between Gas Hydrate and Solid Surfaces.
    Ma R; Wang F; Chang Y; Xiao S; English NJ; He J; Zhang Z
    Langmuir; 2021 Nov; 37(47):13873-13881. PubMed ID: 34784476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Liquid Impregnated Surface with a Stable Lubricant Layer in a Mixed Water/Oil Environment for Low Hydrate Adhesion.
    Mund A; Nayse AK; Das A
    Langmuir; 2023 Aug; 39(34):11964-11974. PubMed ID: 37431818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on Hydrate Growth at the Oil-Water Interface: In the Presence of Wax and Surfactant.
    Song G; Ning Y; Guo P; Li Y; Wang W
    Langmuir; 2021 Jun; 37(22):6838-6845. PubMed ID: 34036780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Tetrahydrofuran Hydrate Formation in the Presence of Polyol-Modified Glass Surfaces.
    Hall JR; Baures PW
    Energy Fuels; 2017 Aug; 31(8):7816-7823. PubMed ID: 35444363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Robust Superhydrophobic Materials for Inhibiting Nucleation of Clathrate Hydrates by Imitating Glass Sponges.
    Yin X; Yan Y; Zhang X; Bao B; Pi P; Zhou Y; Wen X; Jiang L
    ACS Cent Sci; 2023 Feb; 9(2):318-327. PubMed ID: 36844482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of additives and metal rods on the nucleation and growth of gas hydrates.
    Li J; Liang D; Guo K; Wang R
    J Colloid Interface Sci; 2005 Mar; 283(1):223-30. PubMed ID: 15694442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrate Nucleation, Growth, and Induction.
    Kvamme B; Aromada SA; Saeidi N; Hustache-Marmou T; Gjerstad P
    ACS Omega; 2020 Feb; 5(6):2603-2619. PubMed ID: 32095684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.