These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31592466)

  • 1. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein-Ligand Binding Affinity Prediction.
    Zheng L; Fan J; Mu Y
    ACS Omega; 2019 Oct; 4(14):15956-15965. PubMed ID: 31592466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OnionNet-2: A Convolutional Neural Network Model for Predicting Protein-Ligand Binding Affinity Based on Residue-Atom Contacting Shells.
    Wang Z; Zheng L; Liu Y; Qu Y; Li YQ; Zhao M; Mu Y; Li W
    Front Chem; 2021; 9():753002. PubMed ID: 34778208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SE-OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity Prediction.
    Wang S; Liu D; Ding M; Du Z; Zhong Y; Song T; Zhu J; Zhao R
    Front Genet; 2020; 11():607824. PubMed ID: 33737946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction.
    Zhang X; Gao H; Wang H; Chen Z; Zhang Z; Chen X; Li Y; Qi Y; Wang R
    J Chem Inf Model; 2024 Apr; 64(7):2205-2220. PubMed ID: 37319418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Assessment of Scoring Functions: The CASF-2016 Update.
    Su M; Yang Q; Du Y; Feng G; Liu Z; Li Y; Wang R
    J Chem Inf Model; 2019 Feb; 59(2):895-913. PubMed ID: 30481020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors.
    Kumar S; Kim MH
    J Cheminform; 2021 Mar; 13(1):28. PubMed ID: 33766140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new paradigm for applying deep learning to protein-ligand interaction prediction.
    Wang Z; Wang S; Li Y; Guo J; Wei Y; Mu Y; Zheng L; Li W
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GB-score: Minimally designed machine learning scoring function based on distance-weighted interatomic contact features.
    Rayka M; Firouzi R
    Mol Inform; 2023 Mar; 42(3):e2200135. PubMed ID: 36722733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.