BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31592571)

  • 1. Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3-hexylthiophene) Hole Transport Layer.
    Yaghoobi Nia N; Lamanna E; Zendehdel M; Palma AL; Zurlo F; Castriotta LA; Di Carlo A
    Small; 2019 Dec; 15(49):e1904399. PubMed ID: 31592571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Stable Inorganic CsPbI
    Heo JH; Kim DH; Park JK; Choi YK; Lee DS; Im SH
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43066-43074. PubMed ID: 31657896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene).
    Jung EH; Jeon NJ; Park EY; Moon CS; Shin TJ; Yang TY; Noh JH; Seo J
    Nature; 2019 Mar; 567(7749):511-515. PubMed ID: 30918371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA
    Ghoreishi FS; Ahmadi V; Alidaei M; Arabpour Roghabadi F; Samadpour M; Poursalehi R; Johansson EMJ
    Phys Chem Chem Phys; 2022 Jan; 24(3):1675-1684. PubMed ID: 34982079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter.
    Zhang M; Lyu M; Yu H; Yun JH; Wang Q; Wang L
    Chemistry; 2015 Jan; 21(1):434-9. PubMed ID: 25358456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Efficiency and Stability of Triple-Cation Perovskite Solar Cells by Eliminating Excess PbI
    Hu Z; An Q; Xiang H; Aigouy L; Sun B; Vaynzof Y; Chen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54824-54832. PubMed ID: 33226765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Interface Compatibility by Ionic Dendritic Molecules To Achieve Efficient and Stable Perovskite Solar Cells.
    Qi L; Du G; Zhu G; Wang Y; Yang L; Zhang J
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):41109-41120. PubMed ID: 37590128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-Cost and Lithium-Free Hole Transport Layer for Efficient and Stable Normal Perovskite Solar Cells.
    Tzoganakis N; Tsikritzis D; Chatzimanolis K; Zhuang X; Kymakis E
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer.
    Nia NY; Matteocci F; Cina L; Di Carlo A
    ChemSusChem; 2017 Oct; 10(19):3854-3860. PubMed ID: 28556618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pb and Li co-doped NiOx for efficient inverted planar perovskite solar cells.
    Hou D; Zhang J; Gan X; Yuan H; Yu L; Lu C; Sun H; Hu Z; Zhu Y
    J Colloid Interface Sci; 2020 Feb; 559():29-38. PubMed ID: 31606524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of Thermal Stability and Photoelectric Performance of Cs
    Liu Y; Li B; Xu J; Yao J
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells.
    Kim J; Lee Y; Yun AJ; Gil B; Park B
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46818-46824. PubMed ID: 31741386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93 % CsPbI
    Li MH; Shao JY; Jiang Y; Qiu FZ; Wang S; Zhang J; Han G; Tang J; Wang F; Wei Z; Yi Y; Zhong YW; Hu JS
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16388-16393. PubMed ID: 34018292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency.
    Kim GW; Kang G; Malekshahi Byranvand M; Lee GY; Park T
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27720-27726. PubMed ID: 28762266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance carbon electrode-based CsPbI
    Wang G; Liu J; Chen K; Pathak R; Gurung A; Qiao Q
    J Colloid Interface Sci; 2019 Nov; 555():180-186. PubMed ID: 31377644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination.
    Zhang J; Daniel Q; Zhang T; Wen X; Xu B; Sun L; Bach U; Cheng YB
    ACS Nano; 2018 Oct; 12(10):10452-10462. PubMed ID: 30207694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multifunctional Liquid Crystal as Hole Transport Layer Additive Enhances Efficiency and Stability of Perovskite Solar Cells.
    Lai Q; Zhuang R; Zhang K; Wu T; Xie L; Zhao R; Yang L; Wang Y; Hua Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202305670. PubMed ID: 37268600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer.
    Arivazhagan V; Hang P; Parvathi MM; Tang Z; Khan A; Yang D; Yu X
    Nanotechnology; 2020 Jan; 31(6):065401. PubMed ID: 31627206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI
    Mali SS; Patil JV; Steele JA; Rondiya SR; Dzade NY; Hong CK
    ACS Energy Lett; 2021 Feb; 6(2):778-788. PubMed ID: 33829109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24.
    Zhu H; Ren Y; Pan L; Ouellette O; Eickemeyer FT; Wu Y; Li X; Wang S; Liu H; Dong X; Zakeeruddin SM; Liu Y; Hagfeldt A; Grätzel M
    J Am Chem Soc; 2021 Mar; 143(8):3231-3237. PubMed ID: 33600169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.