These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31592633)

  • 1. Radioactive Uranium Preconcentration
    Ying Y; Pourrahimi AM; Sofer Z; Matějková S; Pumera M
    ACS Nano; 2019 Oct; 13(10):11477-11487. PubMed ID: 31592633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-functional metal-organic frameworks-based hydrogel micromotor for uranium detection and removal.
    Zhang X; Chen L; Fu L; Feng K; Gong J; Qu J; Niu R
    J Hazard Mater; 2024 Apr; 467():133654. PubMed ID: 38341894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metal-Organic Frameworks for Enhanced Synergistic Environmental Remediation.
    Chen L; Zhang MJ; Zhang SY; Shi L; Yang YM; Liu Z; Ju XJ; Xie R; Wang W; Chu LY
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35120-35131. PubMed ID: 32648440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water.
    Liu J; Li J; Wang G; Yang W; Yang J; Liu Y
    J Colloid Interface Sci; 2019 Nov; 555():234-244. PubMed ID: 31386992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Self-Assembly of MOFs Colloidosomes for Bubble-Propelled Micromotors and Stirring-Free Environmental Remediation.
    Huang H; Li J; Yuan M; Yang H; Zhao Y; Ying Y; Wang S
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211163. PubMed ID: 36121046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition.
    Ying Y; Pourrahimi AM; Manzanares-Palenzuela CL; Novotny F; Sofer Z; Pumera M
    Small; 2020 Jul; 16(27):e1902944. PubMed ID: 31464380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A remotely steerable Janus micromotor adsorbent for the active remediation of Cs-contaminated water.
    Hwang J; Yang HM; Lee KW; Jung YI; Lee KJ; Park CW
    J Hazard Mater; 2019 May; 369():416-422. PubMed ID: 30784971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond platinum: bubble-propelled micromotors based on Ag and MnO2 catalysts.
    Wang H; Zhao G; Pumera M
    J Am Chem Soc; 2014 Feb; 136(7):2719-22. PubMed ID: 24506544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process.
    Zheng C; Song X; Gan Q; Lin J
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):121-133. PubMed ID: 36327716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-Effective, High-Yield Production of Biotemplated Catalytic Tubular Micromotors as Self-Propelled Microcleaners for Water Treatment.
    Chen L; Yuan H; Chen S; Zheng C; Wu X; Li Z; Liang C; Dai P; Wang Q; Ma X; Yan X
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31226-31235. PubMed ID: 34176260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-propelled micromotors for cleaning polluted water.
    Soler L; Magdanz V; Fomin VM; Sanchez S; Schmidt OG
    ACS Nano; 2013 Nov; 7(11):9611-20. PubMed ID: 24180623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants.
    Ma W; Wang K; Pan S; Wang H
    Langmuir; 2020 Jun; 36(25):6924-6929. PubMed ID: 31657933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous Fenton ferroferric oxide-reduced graphene oxide-based composite microjets for efficient organic dye degradation.
    Shi H; Chen X; Liu K; Ding X; Liu W; Xu M
    J Colloid Interface Sci; 2020 Jul; 572():39-47. PubMed ID: 32222601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propelled activated carbon Janus micromotors for efficient water purification.
    Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J
    Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics.
    Ma E; Wang K; Hu Z; Wang H
    J Colloid Interface Sci; 2021 Dec; 603():685-694. PubMed ID: 34225072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Free Visible-Light Photoactivated C
    Villa K; Manzanares Palenzuela CL; Sofer Z; Matějková S; Pumera M
    ACS Nano; 2018 Dec; 12(12):12482-12491. PubMed ID: 30495923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H
    Panda A; Reddy AS; Venkateswarlu S; Yoon M
    Nanoscale; 2018 Aug; 10(34):16268-16277. PubMed ID: 30128456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals.
    Ye H; Wang Y; Liu X; Xu D; Yuan H; Sun H; Wang S; Ma X
    J Colloid Interface Sci; 2021 Apr; 588():510-521. PubMed ID: 33429347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.