BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31592639)

  • 1. Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane.
    Chaturvedi P; Vlassiouk IV; Cullen DA; Rondinone AJ; Lavrik NV; Smirnov SN
    ACS Nano; 2019 Oct; 13(10):12109-12119. PubMed ID: 31592639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes.
    Bentley CL; Kang M; Bukola S; Creager SE; Unwin PR
    ACS Nano; 2022 Apr; 16(4):5233-5245. PubMed ID: 35286810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Control of Angstrom-Scale Porosity in 2D Lattices for Direct Scalable Synthesis of Atomically Thin Proton Exchange Membranes.
    Moehring NK; Chaturvedi P; Cheng P; Ko W; Li AP; Boutilier MSH; Kidambi PR
    ACS Nano; 2022 Oct; 16(10):16003-16018. PubMed ID: 36201748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic N-Doped Graphene Membrane for Proton Exchange Membranes.
    Zeng Z; Song R; Zhang S; Han X; Zhu Z; Chen X; Wang L
    Nano Lett; 2021 May; 21(10):4314-4319. PubMed ID: 33848172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Proton/Deuteron Transport through Nafion|Graphene|Nafion Sandwich Structures at High Current Density.
    Bukola S; Liang Y; Korzeniewski C; Harris J; Creager S
    J Am Chem Soc; 2018 Feb; 140(5):1743-1752. PubMed ID: 29350035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Gas Permeation in Defect-Engineered Bilayer Graphene.
    Liu J; Jin L; Allen FI; Gao Y; Ci P; Kang F; Wu J
    Nano Lett; 2021 Mar; 21(5):2183-2190. PubMed ID: 33645993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation.
    Anagnostopoulos G; Sygellou L; Paterakis G; Polyzos I; Aggelopoulos CA; Galiotis C
    Nanotechnology; 2019 Jan; 30(1):015704. PubMed ID: 30362463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton irradiation of graphene: insights from atomistic modeling.
    Shi T; Peng Q; Bai Z; Gao F; Jovanovic I
    Nanoscale; 2019 Nov; 11(43):20754-20765. PubMed ID: 31651014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-thin proton conducting carrier layers for scalable integration of atomically thin 2D materials with proton exchange polymers for next-generation PEMs.
    Moehring NK; Naclerio AE; Chaturvedi P; Knight T; Kidambi PR
    Nanoscale; 2024 Apr; 16(14):6973-6983. PubMed ID: 38353333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.
    Rokitskaya TI; Kotova EA; Antonenko YN
    Biophys J; 2002 Feb; 82(2):865-73. PubMed ID: 11806928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ chemical probing of hole defects and cracks in graphene at room temperature.
    Altan AI; Chen J
    Nanoscale; 2018 Jun; 10(23):11052-11063. PubMed ID: 29872823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of graphene with defects induced by electron beam irradiation.
    Malekpour H; Ramnani P; Srinivasan S; Balasubramanian G; Nika DL; Mulchandani A; Lake RK; Balandin AA
    Nanoscale; 2016 Aug; 8(30):14608-16. PubMed ID: 27432290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Different Ion Irradiation on the Contact Resistance of Pd/Graphene Contacts.
    Shahzad K; Jia K; Zhao C; Wang D; Usman M; Luo J
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation.
    Buchheim J; Wyss RM; Shorubalko I; Park HG
    Nanoscale; 2016 Apr; 8(15):8345-54. PubMed ID: 27043304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence in defect evolution data for the ion beam irradiated graphene.
    Yeo S; Han J; Bae S; Lee DS
    Sci Rep; 2018 Sep; 8(1):13973. PubMed ID: 30228358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion Selectivity in Multilayered Stacked Nanoporous Graphene.
    K NA; Kumar S
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5294-5301. PubMed ID: 38236663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion.
    Prod'hom B; Pietrobon D; Hess P
    J Gen Physiol; 1989 Jul; 94(1):23-42. PubMed ID: 2553858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation.
    Yoon K; Rahnamoun A; Swett JL; Iberi V; Cullen DA; Vlassiouk IV; Belianinov A; Jesse S; Sang X; Ovchinnikova OS; Rondinone AJ; Unocic RR; van Duin AC
    ACS Nano; 2016 Sep; 10(9):8376-84. PubMed ID: 27532882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.