These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3159339)

  • 1. Effects of humic materials on virus recovery from water.
    Guttman-Bass N; Catalano-Sherman J
    Appl Environ Microbiol; 1985 May; 49(5):1260-4. PubMed ID: 3159339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of humic and fulvic acids on poliovirus concentration from water by microporous filtration.
    Sobsey MD; Hickey AR
    Appl Environ Microbiol; 1985 Feb; 49(2):259-64. PubMed ID: 2984989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Humic acid interference with virus recovery by electropositive microporous filters.
    Guttman-Bass N; Catalano-Sherman J
    Appl Environ Microbiol; 1986 Sep; 52(3):556-61. PubMed ID: 3021058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration of simian rotavirus SA-11 from tap water by membrane filtration and organic flocculation.
    Guttman-Bass N; Armon R
    Appl Environ Microbiol; 1983 Mar; 45(3):850-5. PubMed ID: 6303220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration of poliovirus from tap water using positively charged microporous filters.
    Sobsey MD; Jones BL
    Appl Environ Microbiol; 1979 Mar; 37(3):588-95. PubMed ID: 36844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of four microporous filters for concentrating viruses from drinking water.
    Jakubowski W; Hill WF; Clarke NA
    Appl Microbiol; 1975 Jul; 30(1):58-65. PubMed ID: 167662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative characterization of the inhibitory effects of salt, humic acid, and heavy metals on the recovery of waterborne norovirus by electropositive filters.
    Kim M; Ko G
    J Water Health; 2013 Dec; 11(4):613-22. PubMed ID: 24334835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration of viruses from tap water and sewage with a charge-modified filter aid.
    Singh SN; Rose JB; Gerba CP
    J Virol Methods; 1983 Jun; 6(6):329-36. PubMed ID: 6309878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to remove environmental inhibitors prior to the detection of waterborne enteric viruses by reverse transcription-polymerase chain reaction.
    Ijzerman MM; Dahling DR; Fout GS
    J Virol Methods; 1997 Jan; 63(1-2):145-53. PubMed ID: 9015285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel filter cartridge system with electropositive granule media to concentrate viruses from large volumes of natural surface water.
    Jin M; Guo X; Wang XW; Yang D; Shen ZQ; Qiu ZG; Chen ZL; Li JW
    Environ Sci Technol; 2014 Jun; 48(12):6947-56. PubMed ID: 24865258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approach for modifying microporous filters for virus concentration from water.
    Preston DR; Vasudevan TV; Bitton G; Farrah SR; Morel JL
    Appl Environ Microbiol; 1988 Jun; 54(6):1325-9. PubMed ID: 2843091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid concentration of bacteriophages from large volumes of freshwater: evaluation of positively charged, microporous filters.
    Logan KB; Rees GE; Seeley ND; Primrose SB
    J Virol Methods; 1980; 1(2):87-97. PubMed ID: 7014575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poliovirus concentration from tap water with electropositive adsorbent filters.
    Sobsey MD; Glass JS
    Appl Environ Microbiol; 1980 Aug; 40(2):201-10. PubMed ID: 6258472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positively charged filters for virus recovery from wastewater treatment plant effluents.
    Chang LT; Farrah SR; Bitton G
    Appl Environ Microbiol; 1981 Nov; 42(5):921-4. PubMed ID: 6274257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water.
    Ikner LA; Soto-Beltran M; Bright KR
    Appl Environ Microbiol; 2011 May; 77(10):3500-6. PubMed ID: 21441329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of MK filters for recovery of enteroviruses from tap water.
    Ma JF; Naranjo J; Gerba CP
    Appl Environ Microbiol; 1994 Jun; 60(6):1974-7. PubMed ID: 8031090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration of enteroviruses from estuarine water.
    Farrah SR; Goyal SM; Gerba CP; Wallis C; Melnick JL
    Appl Environ Microbiol; 1977 May; 33(5):1192-6. PubMed ID: 18088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of salts on virus adsorption to microporous filters.
    Lukasik J; Scott TM; Andryshak D; Farrah SR
    Appl Environ Microbiol; 2000 Jul; 66(7):2914-20. PubMed ID: 10877786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple method for the concentration of influenza virus from allantoic fluid on microporous filters.
    Goyal SM; Hanssen H; Gerba CP
    Appl Environ Microbiol; 1980 Mar; 39(3):500-4. PubMed ID: 7387152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.