These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 31593498)

  • 21. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing.
    Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA
    Am J Sports Med; 2006 Feb; 34(2):269-74. PubMed ID: 16260464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational study of extrinsic factors affecting ACL strain during single-leg jump landing.
    Rao H; Bakker R; McLachlin S; Chandrashekar N
    BMC Musculoskelet Disord; 2024 Apr; 25(1):318. PubMed ID: 38654258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Clin Orthop Relat Res; 2017 Oct; 475(10):2385-2396. PubMed ID: 28455730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait.
    Englander ZA; Martin JT; Ganapathy PK; Garrett WE; DeFrate LE
    J Biomech; 2018 Nov; 81():36-44. PubMed ID: 30249338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: measurements of temporal events, jump height, and sagittal plane kinematics.
    Dowling AV; Favre J; Andriacchi TP
    J Biomech Eng; 2011 Jul; 133(7):071008. PubMed ID: 21823747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury.
    Chappell JD; Creighton RA; Giuliani C; Yu B; Garrett WE
    Am J Sports Med; 2007 Feb; 35(2):235-41. PubMed ID: 17092926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing.
    Deneweth JM; Bey MJ; McLean SG; Lock TR; Kolowich PA; Tashman S
    Am J Sports Med; 2010 Sep; 38(9):1820-8. PubMed ID: 20472756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention.
    Herman DC; Barth JT
    Am J Sports Med; 2016 Sep; 44(9):2347-53. PubMed ID: 27474381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Anterior Cruciate Ligament Deficiency on Tibiofemoral Cartilage Thickness and Strains in Response to Hopping.
    Sutter EG; Liu B; Utturkar GM; Widmyer MR; Spritzer CE; Cutcliffe HC; Englander ZA; Goode AP; Garrett WE; DeFrate LE
    Am J Sports Med; 2019 Jan; 47(1):96-103. PubMed ID: 30365903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.
    Kiapour AM; Demetropoulos CK; Kiapour A; Quatman CE; Wordeman SC; Goel VK; Hewett TE
    Am J Sports Med; 2016 Aug; 44(8):2087-96. PubMed ID: 27159285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction.
    Hofbauer M; Thorhauer ED; Abebe E; Bey M; Tashman S
    Am J Sports Med; 2014 Nov; 42(11):2715-21. PubMed ID: 25227945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study.
    Ueno R; Ishida T; Yamanaka M; Taniguchi S; Ikuta R; Samukawa M; Saito H; Tohyama H
    BMC Musculoskelet Disord; 2017 Nov; 18(1):467. PubMed ID: 29151023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Landing mechanics between noninjured women and women with anterior cruciate ligament reconstruction during 2 jump tasks.
    Ortiz A; Olson S; Libby CL; Trudelle-Jackson E; Kwon YH; Etnyre B; Bartlett W
    Am J Sports Med; 2008 Jan; 36(1):149-57. PubMed ID: 17940142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quadriceps Neuromuscular Function and Jump-Landing Sagittal-Plane Knee Biomechanics After Anterior Cruciate Ligament Reconstruction.
    Ward SH; Blackburn JT; Padua DA; Stanley LE; Harkey MS; Luc-Harkey BA; Pietrosimone B
    J Athl Train; 2018 Feb; 53(2):135-143. PubMed ID: 29350554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frontal Plane Loading Characteristics of Medial Collateral Ligament Strain Concurrent With Anterior Cruciate Ligament Failure.
    Schilaty ND; Bates NA; Krych AJ; Hewett TE
    Am J Sports Med; 2019 Jul; 47(9):2143-2150. PubMed ID: 31219708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.