These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 31593671)

  • 1. Evolution: New Protist Predators under the Sun.
    Colp MJ; Archibald JM
    Curr Biol; 2019 Oct; 29(19):R936-R938. PubMed ID: 31593671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The mitochondrial genome of protists].
    Odintsova MS; Iurina NP
    Genetika; 2002 Jun; 38(6):773-88. PubMed ID: 12138776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 5 S rRNA gene is present in the mitochondrial genome of the protist Reclinomonas americana but is absent from red algal mitochondrial DNA.
    Lang BF; Goff LJ; Gray MW
    J Mol Biol; 1996 Sep; 261(5):407-13. PubMed ID: 8800209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced efficiency and pigment alterations in red algae.
    YOCUM CS; BLINKS LR
    J Gen Physiol; 1958 Jul; 41(6):1113-7. PubMed ID: 13563801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.
    Qiu H; Lee JM; Yoon HS; Bhattacharya D
    J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of freshwater red algae.
    FLINT LH
    Am J Bot; 1947 Mar; 34(3):125-31. PubMed ID: 20295178
    [No Abstract]   [Full Text] [Related]  

  • 7. Nitrogen deficiency and coloration red algae.
    HAXO F; STROUT P
    Biol Bull; 1950 Oct; 99(2):360-1. PubMed ID: 14791530
    [No Abstract]   [Full Text] [Related]  

  • 8. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes.
    Shemi A; Ben-Dor S; Vardi A
    Autophagy; 2015 Apr; 11(4):701-15. PubMed ID: 25915714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes.
    Dautermann O; Lohr M
    Plant J; 2017 Dec; 92(5):879-891. PubMed ID: 28949044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organellar DNA Polymerases in Complex Plastid-Bearing Algae.
    Hirakawa Y; Watanabe A
    Biomolecules; 2019 Apr; 9(4):. PubMed ID: 30959949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine structure in the red algae. III. A general survey of cell-wall structure in the red algae.
    MYERS A; PRESTON RD
    Proc R Soc Lond B Biol Sci; 1959 Sep; 150():456-9. PubMed ID: 13854058
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular evolution of the 5'-terminal domain of large-subunit rRNA from lower eukaryotes. A broad phylogeny covering photosynthetic and non-photosynthetic protists.
    Qu LH; Perasso R; Baroin A; Brugerolle G; Bachellerie JP; Adoutte A
    Biosystems; 1988; 21(3-4):203-8. PubMed ID: 3395679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New ninhydrin-reactive substance from red algae.
    KURIYAMA M
    Nature; 1961 Dec; 192():969. PubMed ID: 14460731
    [No Abstract]   [Full Text] [Related]  

  • 14. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake.
    Li W; Podar M; Morgan-Kiss RM
    Appl Environ Microbiol; 2016 Jun; 82(12):3659-3670. PubMed ID: 27084010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protist classification and the kingdoms of organisms.
    Whittaker RH; Margulis L
    Biosystems; 1978 Apr; 10(1-2):3-18. PubMed ID: 418827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes.
    Deschamps P; Moreira D
    Mol Biol Evol; 2009 Dec; 26(12):2745-53. PubMed ID: 19706725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.
    Heger TJ; Edgcomb VP; Kim E; Lukeš J; Leander BS; Yubuki N
    J Eukaryot Microbiol; 2014; 61(2):214-23. PubMed ID: 24325268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of cholesterol in some red algae.
    TSUDA K; AKAGI S; KISHIDA Y
    Science; 1957 Nov; 126(3279):927-8. PubMed ID: 13486036
    [No Abstract]   [Full Text] [Related]  

  • 19. Decoding algal genomes: tracing back the history of photosynthetic life on Earth.
    Tirichine L; Bowler C
    Plant J; 2011 Apr; 66(1):45-57. PubMed ID: 21443622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When green algae turn red.
    Quarmby LM
    Environ Microbiol; 2017 Feb; 19(2):415-416. PubMed ID: 27871134
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.