These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31593689)

  • 1. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy.
    Das TK; Narhi LO; Sreedhara A; Menzen T; Grapentin C; Chou DK; Antochshuk V; Filipe V
    J Pharm Sci; 2020 Jan; 109(1):116-133. PubMed ID: 31593689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability Evaluation of Hydrogen Peroxide Uptake Samples from Monoclonal Antibody Drug Product Aseptically Filled in Vapor Phase Hydrogen Peroxide-Sanitized Barrier Systems: A Case Study.
    Eisner DR; Hui A; Eppler K; Tegoulia V; Maa YF
    PDA J Pharm Sci Technol; 2019; 73(3):285-291. PubMed ID: 30651338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.
    Gikanga B; Chen Y; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commentary: New perspectives on protein aggregation during Biopharmaceutical development.
    Shah M
    Int J Pharm; 2018 Dec; 552(1-2):1-6. PubMed ID: 30253208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress Factors in Protein Drug Product Manufacturing and Their Impact on Product Quality.
    Das TK; Sreedhara A; Colandene JD; Chou DK; Filipe V; Grapentin C; Searles J; Christian TR; Narhi LO; Jiskoot W
    J Pharm Sci; 2022 Apr; 111(4):868-886. PubMed ID: 34563537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor Phase Hydrogen Peroxide Decontamination or Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product-Hydrogen Peroxide Uptake and Impact on Protein Quality.
    Hubbard A; Roedl T; Hui A; Knueppel S; Eppler K; Lehnert S; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(4):348-366. PubMed ID: 29545321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk-Based Comparability Assessment for Monoclonal Antibodies During Drug Development: A Clinical Pharmacology Perspective.
    Zhuang Y; Chen D; Sharma A; Xu Z
    AAPS J; 2018 Oct; 20(6):109. PubMed ID: 30324224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for high-concentration drug substance manufacturing to facilitate subcutaneous administration: A review.
    Holstein M; Hung J; Feroz H; Ranjan S; Du C; Ghose S; Li ZJ
    Biotechnol Bioeng; 2020 Nov; 117(11):3591-3606. PubMed ID: 32687221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-criteria manufacturability indices for ranking high-concentration monoclonal antibody formulations.
    Yang Y; Velayudhan A; Thornhill NF; Farid SS
    Biotechnol Bioeng; 2017 Sep; 114(9):2043-2056. PubMed ID: 28464235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Freeze/Thaw Process on Drug Substance Storage of Therapeutics.
    Rayfield WJ; Kandula S; Khan H; Tugcu N
    J Pharm Sci; 2017 Aug; 106(8):1944-1951. PubMed ID: 28343990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality by Design Approaches to Formulation Robustness-An Antibody Case Study.
    Wurth C; Demeule B; Mahler HC; Adler M
    J Pharm Sci; 2016 May; 105(5):1667-1675. PubMed ID: 27001536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced cross-linking of formulation buffer amino acids to monoclonal antibodies.
    Powell T; Knight MJ; Wood A; O'Hara J; Burkitt W
    Eur J Pharm Biopharm; 2021 Mar; 160():35-41. PubMed ID: 33508437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2018 Mar; 35(5):101. PubMed ID: 29556730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregates in monoclonal antibody manufacturing processes.
    Vázquez-Rey M; Lang DA
    Biotechnol Bioeng; 2011 Jul; 108(7):1494-508. PubMed ID: 21480193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced Degradation of Monoclonal Antibodies After Compounding: Impact on Routine Hospital Quality Control.
    Jaccoulet E; Daniel T; Prognon P; Caudron E
    J Pharm Sci; 2019 Oct; 108(10):3252-3261. PubMed ID: 31201907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long-Term Stability of Monoclonal Antibodies.
    Luis LM; Hu Y; Zamiri C; Sreedhara A
    PDA J Pharm Sci Technol; 2018; 72(4):393-403. PubMed ID: 29853610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and manufacturability of biologics.
    Shire SJ
    Curr Opin Biotechnol; 2009 Dec; 20(6):708-14. PubMed ID: 19880308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shipping-Induced Aggregation in Therapeutic Antibodies: Utilization of a Scale-Down Model to Assess Degradation in Monoclonal Antibodies.
    Fleischman ML; Chung J; Paul EP; Lewus RA
    J Pharm Sci; 2017 Apr; 106(4):994-1000. PubMed ID: 27964939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.