These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 31593934)
1. Correlation of bioimpedance changes after compressive loading of murine tissues in vivo. Harvey JR; Sen D; Baez A; Hickle K; Tessier H; Slamin R; Dunn R; McNeill J; Mendelson Y Physiol Meas; 2019 Nov; 40(10):105011. PubMed ID: 31593934 [TBL] [Abstract][Full Text] [Related]
2. Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers). Moore Z; Patton D; Rhodes SL; O'Connor T Int Wound J; 2017 Apr; 14(2):331-337. PubMed ID: 27126794 [TBL] [Abstract][Full Text] [Related]
3. Wireless Pressure Ulcer Sensor: Validation in an Animal Model. Hickle K; Slamin R; Baez A; Sen D; Evan-Browning E; Tessier H; Mendelson Y; McNeill J; Dunn R Ann Plast Surg; 2019 Apr; 82(4S Suppl 3):S215-S221. PubMed ID: 30855391 [TBL] [Abstract][Full Text] [Related]
4. A new MR-compatible loading device to study in vivo muscle damage development in rats due to compressive loading. Stekelenburg A; Oomens CW; Strijkers GJ; de Graaf L; Bader DL; Nicolay K Med Eng Phys; 2006 May; 28(4):331-8. PubMed ID: 16118060 [TBL] [Abstract][Full Text] [Related]
5. Comparison between a weight compression and a magnet compression for experimental pressure ulcers in the rat. Histological studies and effects of anesthesia. Hashimoto M; Kurose T; Kawamata S Arch Histol Cytol; 2008 Dec; 71(5):303-16. PubMed ID: 19556692 [TBL] [Abstract][Full Text] [Related]
6. Determining weight-bearing tissue condition using peak reactive hyperemia response trend and ultrasonographic features: Implications for pressure ulcer prevention. Yapp JH; Raja Ahmad RMK; Mahmud R; Mohtarrudin N; Mohamad Yusof L; Abdul Rahim E; Ahmad SA; Abu Bakar MZ Wound Repair Regen; 2019 May; 27(3):225-234. PubMed ID: 30667138 [TBL] [Abstract][Full Text] [Related]
7. An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention. Yeung CC; Holmes DF; Thomason HA; Stephenson C; Derby B; Hardman MJ Wound Repair Regen; 2016 Nov; 24(6):1089-1096. PubMed ID: 27717144 [TBL] [Abstract][Full Text] [Related]
8. Bioimpedance as an indicator in the distribution of interface pressure in vulnerable regions for pressure ulcers: A preliminary study. de Oliveira KF; Rodrigues LP; Barichello E; Chavaglia SRR; da Cunha DF; Ferreira MBG; Nicolussi AC; de Araújo CA; Barbosa MH Int J Nurs Pract; 2019 Aug; 25(4):e12738. PubMed ID: 31090150 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the effect of trunk tilt on compressive soft tissue deformations under the ischial tuberosities using weight-bearing MRI. Shabshin N; Ougortsin V; Zoizner G; Gefen A Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):402-8. PubMed ID: 20188448 [TBL] [Abstract][Full Text] [Related]
10. Comparison of skin pressure measurements with the use of pelvic circumferential compression devices on pelvic ring injuries. Prasarn ML; Horodyski M; Schneider PS; Pernik MN; Gary JL; Rechtine GR Injury; 2016 Mar; 47(3):717-20. PubMed ID: 26777467 [TBL] [Abstract][Full Text] [Related]
11. Trends of reactive hyperaemia responses to repetitive loading on skin tissue of rats - Implications for pressure ulcer prevention. Yapp JH; Kamil R; Rozi M; Mohtarrudin N; Loqman MY; Ezamin AR; Ahmad SA; Abu Bakar Z J Tissue Viability; 2017 Aug; 26(3):196-201. PubMed ID: 28438463 [TBL] [Abstract][Full Text] [Related]
12. Using ultrasound elastography to monitor human soft tissue behaviour during prolonged loading: A clinical explorative study. Schäfer G; Dobos G; Lünnemann L; Blume-Peytavi U; Fischer T; Kottner J J Tissue Viability; 2015 Nov; 24(4):165-72. PubMed ID: 26165202 [TBL] [Abstract][Full Text] [Related]
13. Bioimpedance of soft tissue under compression. Dodde RE; Bull JL; Shih AJ Physiol Meas; 2012 Jun; 33(6):1095-109. PubMed ID: 22621935 [TBL] [Abstract][Full Text] [Related]
14. In vivo and ex vivo approaches to studying the biomechanical properties of healing wounds in rat skin. Chao CY; Ng GY; Cheung KK; Zheng YP; Wang LK; Cheing GL J Biomech Eng; 2013 Oct; 135(10):101009-8. PubMed ID: 23897493 [TBL] [Abstract][Full Text] [Related]
15. Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users. Levy A; Kopplin K; Gefen A J Mech Behav Biomed Mater; 2013 Dec; 28():436-47. PubMed ID: 23706990 [TBL] [Abstract][Full Text] [Related]
17. Prediction of in vivo lower cervical spinal loading using musculoskeletal multi-body dynamics model during the head flexion/extension, lateral bending and axial rotation. Diao H; Xin H; Jin Z Proc Inst Mech Eng H; 2018 Nov; 232(11):1071-1082. PubMed ID: 30223718 [TBL] [Abstract][Full Text] [Related]
18. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments. Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622 [TBL] [Abstract][Full Text] [Related]
19. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement. Auerbach JD; Ballester CM; Hammond F; Carine ET; Balderston RA; Elliott DM Spine J; 2010 Apr; 10(4):333-40. PubMed ID: 20362251 [TBL] [Abstract][Full Text] [Related]