These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 31594028)

  • 41. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA.
    Rodman KC; Veblen TT; Chapman TB; Rother MT; Wion AP; Redmond MD
    Ecol Appl; 2020 Jan; 30(1):e02001. PubMed ID: 31518473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers.
    Hansen WD; Braziunas KH; Rammer W; Seidl R; Turner MG
    Ecology; 2018 Apr; 99(4):966-977. PubMed ID: 29464688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trends and causes of severity, size, and number of fires in northwestern California, USA.
    Miller JD; Skinner CN; Safford HD; Knapp EE; Ramirez CM
    Ecol Appl; 2012 Jan; 22(1):184-203. PubMed ID: 22471083
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying and managing disturbance-stimulated flammability in woody ecosystems.
    Lindenmayer D; Zylstra P
    Biol Rev Camb Philos Soc; 2024 Jun; 99(3):699-714. PubMed ID: 38105616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wildfire and climate change adaptation of western North American forests: a case for intentional management.
    Hessburg PF; Prichard SJ; Hagmann RK; Povak NA; Lake FK
    Ecol Appl; 2021 Dec; 31(8):e02432. PubMed ID: 34339086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world.
    Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR
    Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age.
    Collins L; Bennett AF; Leonard SWJ; Penman TD
    Glob Chang Biol; 2019 Nov; 25(11):3829-3843. PubMed ID: 31215102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fire and forest history at Mount Rushmore.
    Brown PM; Wienk CL; Symstad AJ
    Ecol Appl; 2008 Dec; 18(8):1984-99. PubMed ID: 19263892
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forest restoration and fuels reduction work: Different pathways for achieving success in the Sierra Nevada.
    Stephens SL; Foster DE; Battles JJ; Bernal AA; Collins BM; Hedges R; Moghaddas JJ; Roughton AT; York RA
    Ecol Appl; 2024 Mar; 34(2):e2932. PubMed ID: 37948058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The importance of habitat type and historical fire regimes in arthropod community response following large-scale wildfires.
    Holmquist AJ; Cody Markelz RJ; Martinez CC; Gillespie RG
    Glob Chang Biol; 2024 Jan; 30(1):e17135. PubMed ID: 38273502
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.
    Marchal J; Cumming SG; McIntire EJB
    PLoS One; 2017; 12(6):e0179294. PubMed ID: 28609467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of a large wildfire on vegetation structure in a variable fire mosaic.
    Foster CN; Barton PS; Robinson NM; MacGregor CI; Lindenmayer DB
    Ecol Appl; 2017 Dec; 27(8):2369-2381. PubMed ID: 28851094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes.
    Bukowski BE; Baker WL
    Ecol Appl; 2013 Apr; 23(3):546-64. PubMed ID: 23734485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research.
    Arroyo-Rodríguez V; Melo FP; Martínez-Ramos M; Bongers F; Chazdon RL; Meave JA; Norden N; Santos BA; Leal IR; Tabarelli M
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):326-340. PubMed ID: 26537849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forest dynamics in Oregon landscapes: evaluation and application of an individual-based model.
    Busing RT; Solomon AM; McKane RB; Burdick CA
    Ecol Appl; 2007 Oct; 17(7):1967-81. PubMed ID: 17974335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States.
    Kooistra C; Hall TE; Paveglio T; Pickering M
    Environ Manage; 2018 Jan; 61(1):85-102. PubMed ID: 29177894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics.
    Dos Reis M; Graça PMLA; Yanai AM; Ramos CJP; Fearnside PM
    J Environ Manage; 2021 Jun; 288():112310. PubMed ID: 33761331
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA.
    Zald HS; Spies TA; Seidl R; Pabst RJ; Olsen KA; Steel EA
    For Ecol Manage; 2016 Apr; 366():193-207. PubMed ID: 27041818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatiotemporal effects of logging and fire on tall, wet temperate eucalypt forest birds.
    Lindenmayer DB; Blanchard W; Blair D; Westgate MJ; Scheele BC
    Ecol Appl; 2019 Dec; 29(8):e01999. PubMed ID: 31519053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conserving old-growth forest diversity in disturbance-prone landscapes.
    Spies TA; Hemstrom MA; Youngblood A; Hummel S
    Conserv Biol; 2006 Apr; 20(2):351-62. PubMed ID: 16903096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.