These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 31594334)
1. Analytical energy gradient for the embedded cluster density approximation. Huang C J Chem Phys; 2019 Oct; 151(13):134101. PubMed ID: 31594334 [TBL] [Abstract][Full Text] [Related]
2. Embedded Cluster Density Approximation for Exchange-Correlation Energy: A Natural Extension of the Local Density Approximation. Huang C J Chem Theory Comput; 2018 Dec; 14(12):6211-6225. PubMed ID: 30380864 [TBL] [Abstract][Full Text] [Related]
3. Efficient Embedded Cluster Density Approximation Calculations with an Orbital-Free Treatment of Environments. Chi YC; Shaban Tameh M; Huang C J Chem Theory Comput; 2021 May; 17(5):2737-2751. PubMed ID: 33856795 [TBL] [Abstract][Full Text] [Related]
4. Analytical Forces for the Optimized Effective Potential Calculations. Huang C J Chem Theory Comput; 2023 Mar; 19(6):1744-1752. PubMed ID: 36848458 [TBL] [Abstract][Full Text] [Related]
5. Patching the Exchange-Correlation Potential in Density Functional Theory. Huang C J Chem Theory Comput; 2016 May; 12(5):2224-33. PubMed ID: 27049843 [TBL] [Abstract][Full Text] [Related]
6. Directly patching high-level exchange-correlation potential based on fully determined optimized effective potentials. Huang C; Chi YC J Chem Phys; 2017 Dec; 147(24):244111. PubMed ID: 29289130 [TBL] [Abstract][Full Text] [Related]
7. Connection between Hybrid Functionals and Importance of the Local Density Approximation. Mosquera MA; Borca CH; Ratner MA; Schatz GC J Phys Chem A; 2016 Mar; 120(9):1605-12. PubMed ID: 26901359 [TBL] [Abstract][Full Text] [Related]
8. Explanation of the Source of Very Large Errors in Many Exchange-Correlation Functionals for Vanadium Dimer. Zhang W; Truhlar DG; Tang M J Chem Theory Comput; 2014 Jun; 10(6):2399-409. PubMed ID: 26580760 [TBL] [Abstract][Full Text] [Related]
9. Extension of the KLI approximation toward the exact optimized effective potential. Iafrate GJ; Krieger JB J Chem Phys; 2013 Mar; 138(9):094104. PubMed ID: 23485274 [TBL] [Abstract][Full Text] [Related]
11. Analytic energy gradients of the optimized effective potential method. Wu Q; Cohen AJ; Yang W J Chem Phys; 2005 Oct; 123(13):134111. PubMed ID: 16223279 [TBL] [Abstract][Full Text] [Related]
12. Simple iterative construction of the optimized effective potential for orbital functionals, including exact exchange. Kümmel S; Perdew JP Phys Rev Lett; 2003 Jan; 90(4):043004. PubMed ID: 12570417 [TBL] [Abstract][Full Text] [Related]
13. Kinetic-Energy Density-Functional Theory on a Lattice. Theophilou I; Buchholz F; Eich FG; Ruggenthaler M; Rubio A J Chem Theory Comput; 2018 Aug; 14(8):4072-4087. PubMed ID: 29969552 [TBL] [Abstract][Full Text] [Related]
14. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals? Xu X; Zhang W; Tang M; Truhlar DG J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408 [TBL] [Abstract][Full Text] [Related]
15. Analytical evaluation of Fukui functions and real-space linear response function. Yang W; Cohen AJ; De Proft F; Geerlings P J Chem Phys; 2012 Apr; 136(14):144110. PubMed ID: 22502504 [TBL] [Abstract][Full Text] [Related]
16. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory. Stoyanova A; Teale AM; Toulouse J; Helgaker T; Fromager E J Chem Phys; 2013 Oct; 139(13):134113. PubMed ID: 24116558 [TBL] [Abstract][Full Text] [Related]
17. Kohn-Sham band gaps and potentials of solids from the optimised effective potential method within the random phase approximation. Klimeš J; Kresse G J Chem Phys; 2014 Feb; 140(5):054516. PubMed ID: 24511961 [TBL] [Abstract][Full Text] [Related]
18. A Critical Evaluation of the Hybrid KS DFT Functionals Based on the KS Exchange-Correlation Potentials. Kumar VB; Śmiga S; Grabowski I J Phys Chem Lett; 2024 Oct; 15(40):10219-10229. PubMed ID: 39356205 [TBL] [Abstract][Full Text] [Related]
19. Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. Zahariev F; Leang SS; Gordon MS J Chem Phys; 2013 Jun; 138(24):244108. PubMed ID: 23822228 [TBL] [Abstract][Full Text] [Related]