BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31594361)

  • 1. Surface chemistry and electrochemistry of an ionic liquid and lithium on Li
    Kim J; Weber I; Buchner F; Schnaidt J; Behm RJ
    J Chem Phys; 2019 Oct; 151(13):134704. PubMed ID: 31594361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode
    Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ
    J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model Studies on the Formation of the Solid Electrolyte Interphase: Reaction of Li with Ultrathin Adsorbed Ionic-Liquid Films and Co
    Forster-Tonigold K; Kim J; Bansmann J; Groß A; Buchner F
    Chemphyschem; 2021 Mar; 22(5):441-454. PubMed ID: 33373085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Science and Electrochemical Model Studies on the Interaction of Graphite and Li-Containing Ionic Liquids.
    Weber I; Kim J; Buchner F; Schnaidt J; Behm RJ
    ChemSusChem; 2020 May; 13(10):2589-2601. PubMed ID: 32196973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the ionic liquid [BMP][TFSA] with rutile TiO2(110) and coadsorbed lithium.
    Uhl B; Hekmatfar M; Buchner F; Behm RJ
    Phys Chem Chem Phys; 2016 Mar; 18(9):6618-36. PubMed ID: 26869155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent insertion and adsorption of lithium on spinel Li
    Kim J; Buchner F; Behm RJ
    Phys Chem Chem Phys; 2018 Jul; 20(27):18319-18327. PubMed ID: 29938292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercalation and Deintercalation of Lithium at the Ionic Liquid-Graphite(0001) Interface.
    Buchner F; Kim J; Adler C; Bozorgchenani M; Bansmann J; Behm RJ
    J Phys Chem Lett; 2017 Dec; 8(23):5804-5809. PubMed ID: 29131962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiOx on Li4Ti5O12 for High-Energy-Density Lithium-Ion Batteries.
    Jo MR; Lee GH; Kang YM
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27934-9. PubMed ID: 26619966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Ultrathin Ethylene Carbonate Films on Pristine and Lithiated Graphite and Their Interaction with Li.
    Bozorgchenani M; Buchner F; Forster-Tonigold K; Kim J; Groß A; Behm RJ
    Langmuir; 2018 Jul; 34(29):8451-8463. PubMed ID: 29943996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids.
    Arano K; Begic S; Chen F; Rakov D; Mazouzi D; Gautier N; Kerr R; Lestriez B; Le Bideau J; Howlett PC; Guyomard D; Forsyth M; Dupre N
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28281-28294. PubMed ID: 34114808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes.
    Yoon I; Jurng S; Abraham DP; Lucht BL; Guduru PR
    Nano Lett; 2018 Sep; 18(9):5752-5759. PubMed ID: 30103601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid.
    Lahiri A; Borisenko N; Borodin A; Olschewski M; Endres F
    Phys Chem Chem Phys; 2016 Feb; 18(7):5630-7. PubMed ID: 26863589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the Behavior of Na Ions and Solid Electrolyte Interphase Formation at an Aluminum/Ionic Liquid Electrode/Electrolyte Interface via Operando Electrochemical X-ray Photoelectron Spectroscopy.
    Lee R; Nunney TS; Isaacs M; Palgrave RG; Dey A
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38932607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O
    Jusys Z; Schnaidt J; Behm RJ
    J Chem Phys; 2019 Jan; 150(4):041724. PubMed ID: 30709319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Visualization of Nucleation and Growth Processes of Solid Electrolyte Interphase Film Using in Situ Atomic Force Microscopy.
    Shi Y; Yan HJ; Wen R; Wan LJ
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):22063-22067. PubMed ID: 28594541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy.
    Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the Hydrate-Melt/Li
    Kitta M; Taguchi N; Fukada C; Kohyama M
    Langmuir; 2017 Dec; 33(49):13923-13928. PubMed ID: 29144143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries.
    Do MP; Bucher N; Nagasubramanian A; Markovits I; Bingbing T; Fischer PJ; Loh KP; Kühn FE; Srinivasan M
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23972-23981. PubMed ID: 31251014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing a Safe Electrolyte Enabling Long-Life Li/S Batteries.
    Agostini M; Sadd M; Xiong S; Cavallo C; Heo J; Ahn JH; Matic A
    ChemSusChem; 2019 Sep; 12(18):4176-4184. PubMed ID: 31330082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.