These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31594381)

  • 1. Plant traits related to the heavy metal removal capacities of wetland plants.
    Schück M; Greger M
    Int J Phytoremediation; 2020; 22(4):427-435. PubMed ID: 31594381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening the Capacity of 34 Wetland Plant Species to Remove Heavy Metals from Water.
    Schück M; Greger M
    Int J Environ Res Public Health; 2020 Jun; 17(13):. PubMed ID: 32605055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal.
    Sharma R; Vymazal J; Malaviya P
    Sci Total Environ; 2021 Jul; 777():146044. PubMed ID: 33689897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.
    Liu J; Dong Y; Xu H; Wang D; Xu J
    J Hazard Mater; 2007 Aug; 147(3):947-53. PubMed ID: 17353090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the
    Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P
    Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of plant species and traits on metal treatment and phytoextraction in stormwater bioretention.
    Lange K; Viklander M; Blecken GT
    J Environ Manage; 2020 Dec; 276():111282. PubMed ID: 32891032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of design and operational parameters on nutrients and heavy metal removal in pilot floating treatment wetlands with Eichhornia Crassipes treating polluted lake water.
    Gaballah MS; Ismail K; Aboagye D; Ismail MM; Sobhi M; Stefanakis AI
    Environ Sci Pollut Res Int; 2021 May; 28(20):25664-25678. PubMed ID: 33464529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic and terrestrial plant species with potential to remove heavy metals from storm-water.
    Fritioff A; Greger M
    Int J Phytoremediation; 2003; 5(3):211-24. PubMed ID: 14750429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands.
    Galal TM; Gharib FA; Ghazi SM; Mansour KH
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of organic pollutants on metal and As uptake by helophyte species and consequences for constructed wetlands design and management.
    Guittonny-Philippe A; Masotti V; Claeys-Bruno M; Malleret L; Coulomb B; Prudent P; Höhener P; Petit MÉ; Sergent M; laffont-Schwob I
    Water Res; 2015 Jan; 68():328-41. PubMed ID: 25462740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of elemental uptake in the root chemistry of wetland plants.
    Aryal R; Nirola R; Beecham S; Kamruzzaman M
    Int J Phytoremediation; 2016 Sep; 18(9):936-42. PubMed ID: 26709636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper hydrophytoremediation by wetland macrophytes in semi-hydroponic and hydroponic mesocosms.
    Rimal S; Karam A; Chen J; Parajuli A; Khasa DP
    Int J Phytoremediation; 2023; 25(6):737-745. PubMed ID: 35917556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.
    Liang Y; Zhu H; Bañuelos G; Xu Y; Yan B; Cheng X
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33804-33815. PubMed ID: 29881966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the heavy metals' removal capacity of some native plant species from the wetland groundwater of Maharlu Lake in Fars province, Iran.
    Zare K; Sheykhi V; Zare M
    Int J Phytoremediation; 2020; 22(7):781-788. PubMed ID: 31941363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment.
    Bonanno G; Borg JA; Di Martino V
    Sci Total Environ; 2017 Jan; 576():796-806. PubMed ID: 27810764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of wetlands to phytoremediate zinc, lead and chromium.
    Matodzi V; Legodi MA; Tavengwa NT
    Int J Phytoremediation; 2021; 23(8):857-865. PubMed ID: 33983858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.