BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31594594)

  • 1. Enhancing the selectivity of polar hydrophilic analytes with a low concentration of barium ions in the mobile phase using geopolymers and silica supports.
    Khanal DD; Thakur N; Wahab MF; Armstrong DW
    Talanta; 2020 Jan; 207():120339. PubMed ID: 31594594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic aluminosilicate based geopolymers - Second generation geopolymer HPLC stationary phases.
    Thakur N; Wahab MF; Khanal DD; Armstrong DW
    Anal Chim Acta; 2019 Nov; 1081():209-217. PubMed ID: 31446960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geopolymers as a New Class of High pH Stable Supports with Different Chromatographic Selectivity.
    Wimalasinghe RM; Weatherly CA; Wahab MF; Thakur N; Armstrong DW
    Anal Chem; 2018 Jul; 90(13):8139-8146. PubMed ID: 29893545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography.
    Aral H; Çelik KS; Altındağ R; Aral T
    Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity and Microstructure of Metakaolin Based Geopolymers: Effect of Fly Ash and Liquid/Solid Contents.
    Vogt O; Ukrainczyk N; Ballschmiede C; Koenders E
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary and mobile phases in hydrophilic interaction chromatography: a review.
    Jandera P
    Anal Chim Acta; 2011 Apr; 692(1-2):1-25. PubMed ID: 21501708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.
    Ibrahim ME; Wahab MF; Lucy CA
    Anal Chim Acta; 2014 Apr; 820():187-94. PubMed ID: 24745753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The retention behaviour of polar compounds on zirconia based stationary phases under hydrophilic interaction liquid chromatography conditions.
    Kučera R; Kovaříková P; Klivický M; Klimeš J
    J Chromatogr A; 2011 Sep; 1218(39):6981-6. PubMed ID: 21880318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range.
    McCalley DV
    J Chromatogr A; 2015 Sep; 1411():41-9. PubMed ID: 26275863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of C18 Organic Phases with Multiple Embedded Polar Groups for Ultraversatile Applications with Ultrahigh Selectivity.
    Mallik AK; Qiu H; Oishi T; Kuwahara Y; Takafuji M; Ihara H
    Anal Chem; 2015 Jul; 87(13):6614-21. PubMed ID: 26041430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and multi-mode liquid chromatographic application of 4-propylaminomethyl benzoic acid bonded silica--a zwitterionic stationary phase.
    Wijekoon A; Gangoda ME; Gregory RB
    J Chromatogr A; 2012 Dec; 1270():212-8. PubMed ID: 23200307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantiomeric separations of chiral sulfonic and phosphoric acids with barium-doped cyclofructan selectors via an ion interaction mechanism.
    Smuts JP; Hao XQ; Han Z; Parpia C; Krische MJ; Armstrong DW
    Anal Chem; 2014 Jan; 86(2):1282-90. PubMed ID: 24372088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation of xylitol and maltitol modified silica as novel stationary phases for hydrophilic interaction liquid chromatography and evaluation of their separation performance].
    Yong T; Wu F; Xiao H; Wan B
    Se Pu; 2015 Sep; 33(9):910-6. PubMed ID: 26753275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of surfactin-modified silica stationary phase for reversed-phase and hydrophilic interaction liquid chromatography.
    Ohyama K; Inoue Y; Kishikawa N; Kuroda N
    J Chromatogr A; 2014 Dec; 1371():257-60. PubMed ID: 25456604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds.
    Jandera P; Bocian S; Molíková M; Buszewski B
    J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.
    Li H; Liu C; Wang Q; Zhou H; Jiang Z
    J Chromatogr A; 2016 Oct; 1469():77-87. PubMed ID: 27692647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HILIC behavior of a reversed-phase/cation-exchange/anion-exchange trimode column.
    Liu X; Pohl CA
    J Sep Sci; 2010 Mar; 33(6-7):779-86. PubMed ID: 20183821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.