These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31594865)

  • 1. Glucoselysine is derived from fructose and accumulates in the eye lens of diabetic rats.
    Ohno RI; Ichimaru K; Tanaka S; Sugawa H; Katsuta N; Sakake S; Tominaga YK; Ban I; Shirakawa JI; Yamaguchi Y; Ito E; Taniguchi N; Nagai R
    J Biol Chem; 2019 Nov; 294(46):17326-17338. PubMed ID: 31594865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific detections of the early process of the glycation reaction by fructose and glucose in diabetic rat lens.
    Kawasaki Y; Fujii J; Miyazawa N; Hoshi A; Okado A; Tano Y; Taniguchi N
    FEBS Lett; 1998 Dec; 441(1):116-20. PubMed ID: 9877177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucoselysine, a unique advanced glycation end-product of the polyol pathway and its association with vascular complications in type 2 diabetes.
    Yamaguchi H; Matsumura T; Sugawa H; Niimi N; Sango K; Nagai R
    J Biol Chem; 2024 Jul; 300(7):107479. PubMed ID: 38879006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyol pathway activity in streptozotocin-diabetic rat lens.
    Cheng HM; Hirose K; Xiong H; González RG
    Exp Eye Res; 1989 Jul; 49(1):87-92. PubMed ID: 2759193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ellagic acid, a new antiglycating agent: its inhibition of Nϵ-(carboxymethyl)lysine.
    Muthenna P; Akileshwari C; Reddy GB
    Biochem J; 2012 Feb; 442(1):221-30. PubMed ID: 22060242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine.
    Wiame E; Lamosa P; Santos H; Van Schaftingen E
    Biochem J; 2005 Dec; 392(Pt 2):263-9. PubMed ID: 16153181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of a glycemic threshold for the development of cataracts in diabetic rats.
    Swamy-Mruthinti S; Shaw SM; Zhao HR; Green K; Abraham EC
    Curr Eye Res; 1999 Jun; 18(6):423-9. PubMed ID: 10435829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunological detection of fructated proteins in vitro and in vivo.
    Miyazawa N; Kawasaki Y; Fujii J; Theingi M; Hoshi A; Hamaoka R; Matsumoto A; Uozumi N; Teshima T; Taniguchi N
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):101-7. PubMed ID: 9806890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunochemical detection of advanced glycation end products in lens crystallins from streptozocin-induced diabetic rat.
    Nakayama H; Mitsuhashi T; Kuwajima S; Aoki S; Kuroda Y; Itoh T; Nakagawa S
    Diabetes; 1993 Feb; 42(2):345-50. PubMed ID: 8425672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of fructose-3-phosphate in the diabetic rat lens.
    Lal S; Szwergold BS; Taylor AH; Randall WC; Kappler F; Wells-Knecht K; Baynes JW; Brown TR
    Arch Biochem Biophys; 1995 Apr; 318(1):191-9. PubMed ID: 7726561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of glucose, sorbitol and fructose accumulation in lens and liver of diabetic and insulin-treated rats and mice.
    Gaynes BI; Watkins JB
    Comp Biochem Physiol B; 1989; 92(4):685-90. PubMed ID: 2498032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bendazac decreases in vitro glycation of human lens crystallins. Decrease of in vitro protein glycation by bendazac.
    Marques C; Ramalho JS; Pereira P; Mota MC
    Doc Ophthalmol; 1995; 90(4):395-404. PubMed ID: 8620822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein glycation and in vivo distribution of human lens fluorescence.
    Mota MC; Carvalho P; Ramalho JS; Cardoso E; Gaspar AM; Abreu G
    Int Ophthalmol; 1994-1995; 18(4):187-93. PubMed ID: 7797380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid.
    Obrosova I; Cao X; Greene DA; Stevens MJ
    Diabetologia; 1998 Dec; 41(12):1442-50. PubMed ID: 9867211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue ascorbic acid and polyol pathway metabolism in experimental diabetes.
    Lindsay RM; Jamieson NS; Walker SA; McGuigan CC; Smith W; Baird JD
    Diabetologia; 1998 May; 41(5):516-23. PubMed ID: 9628267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics.
    Valencia JV; Weldon SC; Quinn D; Kiers GH; DeGroot J; TeKoppele JM; Hughes TE
    Anal Biochem; 2004 Jan; 324(1):68-78. PubMed ID: 14654047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic hyperglycemia on crystallin levels in rat lens.
    Reddy VS; Kumar CU; Reddy GB
    Biochem Biophys Res Commun; 2014 Apr; 446(2):602-7. PubMed ID: 24632206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins.
    Reddy S; Bichler J; Wells-Knecht KJ; Thorpe SR; Baynes JW
    Biochemistry; 1995 Aug; 34(34):10872-8. PubMed ID: 7662668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of advanced glycation end-products (AGE) in late diabetic complications.
    Sensi M; Pricci F; Pugliese G; De Rossi MG; Petrucci AF; Cristina A; Morano S; Pozzessere G; Valle E; Andreani D
    Diabetes Res Clin Pract; 1995 Apr; 28(1):9-17. PubMed ID: 7587917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.