These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 31594981)
1. Sites of persistence of Fusobacterium necrophorum and Dichelobacter nodosus: a paradigm shift in understanding the epidemiology of footrot in sheep. Clifton R; Giebel K; Liu NLBH; Purdy KJ; Green LE Sci Rep; 2019 Oct; 9(1):14429. PubMed ID: 31594981 [TBL] [Abstract][Full Text] [Related]
2. Characterisation of Dichelobacter nodosus and detection of Fusobacterium necrophorum and Treponema spp. in sheep with different clinical manifestations of footrot. Frosth S; König U; Nyman AK; Pringle M; Aspán A Vet Microbiol; 2015 Aug; 179(1-2):82-90. PubMed ID: 25796133 [TBL] [Abstract][Full Text] [Related]
3. A longitudinal study of the role of Dichelobacter nodosus and Fusobacterium necrophorum load in initiation and severity of footrot in sheep. Witcomb LA; Green LE; Kaler J; Ul-Hassan A; Calvo-Bado LA; Medley GF; Grogono-Thomas R; Wellington EM Prev Vet Med; 2014 Jul; 115(1-2):48-55. PubMed ID: 24703249 [TBL] [Abstract][Full Text] [Related]
4. Dichelobacter nodosus, Fusobacterium necrophorum and the epidemiology of footrot. Bennett G; Hickford J; Sedcole R; Zhou H Anaerobe; 2009 Aug; 15(4):173-6. PubMed ID: 19239925 [TBL] [Abstract][Full Text] [Related]
5. First study of pathogen load and localisation of ovine footrot using fluorescence in situ hybridisation (FISH). Witcomb LA; Green LE; Calvo-Bado LA; Russell CL; Smith EM; Grogono-Thomas R; Wellington EM Vet Microbiol; 2015 Apr; 176(3-4):321-7. PubMed ID: 25742734 [TBL] [Abstract][Full Text] [Related]
6. Mathematical modeling of ovine footrot in the UK: the effect of Dichelobacter nodosus and Fusobacterium necrophorum on the disease dynamics. Atia J; Monaghan E; Kaler J; Purdy K; Green L; Keeling M Epidemics; 2017 Dec; 21():13-20. PubMed ID: 28461081 [TBL] [Abstract][Full Text] [Related]
7. Ovine footrot: new insights into bacterial colonisation. Maboni G; Frosth S; Aspán A; Tötemeyer S Vet Rec; 2016 Sep; 179(9):228. PubMed ID: 27317761 [TBL] [Abstract][Full Text] [Related]
8. Fusobacterium necrophorum, and not Dichelobacter nodosus, is associated with equine hoof thrush. Petrov KK; Dicks LM Vet Microbiol; 2013 Jan; 161(3-4):350-2. PubMed ID: 22909990 [TBL] [Abstract][Full Text] [Related]
9. Ovine footrot in Southern Portugal: Detection of Dichelobacter nodosus and Fusobacterium necrophorum in sheep with different lesion scores. Albuquerque C; Cavaco S; Caetano P; Branco S; Monteiro H; Ramos M; Usié Chimenos A; Leão C; Botelho A Vet Microbiol; 2022 Mar; 266():109339. PubMed ID: 35074618 [TBL] [Abstract][Full Text] [Related]
10. Variation in Fusobacterium necrophorum strains present on the hooves of footrot infected sheep, goats and cattle. Zhou H; Bennett G; Hickford JG Vet Microbiol; 2009 Mar; 135(3-4):363-7. PubMed ID: 19019570 [TBL] [Abstract][Full Text] [Related]
11. Severity and persistence of footrot in Merino sheep experimentally infected with a protease thermostable strain of Dichelobacter nodosus at five sites. Depiazzi LJ; Roberts WD; Hawkins CD; Palmer MA; Pitman DR; Mcquade NC; Jelinek PD; Devereaux DJ; Rippon RJ Aust Vet J; 1998 Jan; 76(1):32-8. PubMed ID: 9578765 [TBL] [Abstract][Full Text] [Related]
12. The detection of Dichelobacter nodosus and Fusobacterium necrophorum from ovine footrot in Kashmir, India. Farooq S; Wani SA; Hassan MN; Nazir N; Nyrah QJ Anaerobe; 2015 Oct; 35(Pt B):41-3. PubMed ID: 26159406 [TBL] [Abstract][Full Text] [Related]
13. Cross-infection of virulent Dichelobacter nodosus between sheep and co-grazing cattle. Knappe-Poindecker M; Gilhuus M; Jensen TK; Vatn S; Jørgensen HJ; Fjeldaas T Vet Microbiol; 2014 Jun; 170(3-4):375-82. PubMed ID: 24698131 [TBL] [Abstract][Full Text] [Related]
14. Elimination of virulent strains (aprV2) of Dichelobacter nodosus from feet of 28 Swiss sheep flocks: A proof of concept study. Greber D; Bearth G; Lüchinger R; Schuepbach-Regula G; Steiner A Vet J; 2016 Oct; 216():25-32. PubMed ID: 27687922 [TBL] [Abstract][Full Text] [Related]
15. Prevalence of bacterial species associated with ovine footrot and contagious ovine digital dermatitis in Swedish slaughter lambs. Rosander A; Albinsson R; König U; Nyman A; Frosth S Acta Vet Scand; 2022 Mar; 64(1):6. PubMed ID: 35264235 [TBL] [Abstract][Full Text] [Related]
16. A metagenomics approach to characterize the footrot microbiome in Merino sheep. Usié A; Leão C; Gaspar D; Monteiro H; Tábuas L; Bettencourt E; Caetano P; Padre L; Carolino N; Ramos AM; de Matos C; Branco S Vet Microbiol; 2023 Jun; 281():109745. PubMed ID: 37080086 [TBL] [Abstract][Full Text] [Related]
17. The prevalence of Dichelobacter nodosus in clinically footrot-free sheep flocks: a comparative field study on elimination strategies. Kraft AF; Strobel H; Hilke J; Steiner A; Kuhnert P BMC Vet Res; 2020 Jan; 16(1):21. PubMed ID: 31969162 [TBL] [Abstract][Full Text] [Related]
18. Pathogenesis of ovine footrot disease: a complex picture. Clifton R; Green L Vet Rec; 2016 Sep; 179(9):225-7. PubMed ID: 27585895 [No Abstract] [Full Text] [Related]
19. Artificial infection of sheep with multiple strains of Dichelobacter nodosus to induce footrot. Allworth MB; Egerton JR Aust Vet J; 2017 Aug; 95(8):273-280. PubMed ID: 28749020 [TBL] [Abstract][Full Text] [Related]
20. Ovine footrot: new approaches to an old disease. Bennett GN; Hickford JG Vet Microbiol; 2011 Feb; 148(1):1-7. PubMed ID: 20926208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]