These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31595106)

  • 1. Shape memory polymers with silicon-containing segments.
    Schoener CA; Weyand CB; Murthy R; Grunlan MA
    J Mater Chem; 2010 Mar; 20(9):1787-1793. PubMed ID: 31595106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous inorganic-organic shape memory polymers.
    Zhang D; Burkes WL; Schoener CA; Grunlan MA
    Polymer (Guildf); 2012 Jun; 53(14):2935-2941. PubMed ID: 22956854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates.
    Beltran FO; Houk CJ; Grunlan MA
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1631-1639. PubMed ID: 33667062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering.
    Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ
    Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.
    Woodard LN; Page VM; Kmetz KT; Grunlan MA
    Macromol Rapid Commun; 2016 Dec; 37(23):1972-1977. PubMed ID: 27774684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers.
    Kai D; Tan MJ; Prabhakaran MP; Chan BQY; Liow SS; Ramakrishna S; Loh XJ
    Colloids Surf B Biointerfaces; 2016 Dec; 148():557-565. PubMed ID: 27690245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Thermo-Responsive Polycaprolactone-Polydimethylsiloxane Shrinkable Nanofibre Mesh.
    Hsieh CH; Mohd Razali NA; Lin WC; Yu ZW; Istiqomah D; Kotsuchibashi Y; Su HH
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.
    Garle A; Kong S; Ojha U; Budhlall BM
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties.
    Liverani L; Liguori A; Zezza P; Gualandi C; Toselli M; Boccaccini AR; Focarete ML
    Bioact Mater; 2022 May; 11():230-239. PubMed ID: 34977428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells.
    Song L; Ahmed MF; Li Y; Bejoy J; Zeng C; Li Y
    Tissue Eng Part C Methods; 2017 Oct; 23(10):627-640. PubMed ID: 28826352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures.
    Jing X; Mi HY; Huang HX; Turng LS
    J Mech Behav Biomed Mater; 2016 Dec; 64():94-103. PubMed ID: 27490212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma.
    Fulati A; Uto K; Iwanaga M; Watanabe M; Ebara M
    Adv Healthc Mater; 2022 Jul; 11(13):e2200050. PubMed ID: 35385611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shape-memory poly(ε-caprolactone) hybridized TiO
    Hu X; Song X; Xu M; Wang Y; Zhu C; Yu W; Zhao Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126567. PubMed ID: 37643671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH).
    Rodriguez ED; Luo X; Mather PT
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):152-61. PubMed ID: 21250636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green and sustainable cellulose-based shape memory composites with excellent conductivity for temperature warning.
    Jiang Z; Wang Y; Huang Z; Ma W; Gao S; Dong W; Xu M
    Carbohydr Polym; 2022 Jan; 276():118767. PubMed ID: 34823787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.