BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31595344)

  • 1. Combination of natural antimicrobials for contamination control in ethanol production.
    Maia NJL; Corrêa JAF; Rigotti RT; da Silva Junior AA; Luciano FB
    World J Microbiol Biotechnol; 2019 Oct; 35(10):158. PubMed ID: 31595344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nisin incorporation enhances the inactivation of lactic acid bacteria during the acid wash step of bioethanol production from sugarcane juice.
    Zhang L; Holle MJ; Kim JS; Daum MA; Miller MJ
    Lett Appl Microbiol; 2019 Jul; 69(1):50-56. PubMed ID: 31004511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation.
    Bassi APG; Meneguello L; Paraluppi AL; Sanches BCP; Ceccato-Antonini SR
    Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1661-1672. PubMed ID: 29488182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae.
    Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY
    Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process.
    Galvagno MA; Gil GR; Iannone LJ; Cerrutti P
    Rev Argent Microbiol; 2007; 39(3):170-6. PubMed ID: 17987854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative antimicrobial compounds to control potential Lactobacillus contamination in bioethanol fermentations.
    Limayem A; Hanning IB; Muthaiyan A; Illeghems K; Kim JW; Crandall PG; O'Bryan CA; Ricke SC
    J Environ Sci Health B; 2011; 46(8):709-14. PubMed ID: 21879832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production.
    Costa MAS; Cerri BC; Ceccato-Antonini SR
    Lett Appl Microbiol; 2018 Jan; 66(1):77-85. PubMed ID: 29108112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum.
    Collograi KC; da Costa AC; Ienczak JL
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):5039-5050. PubMed ID: 30989252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling bacterial contamination of fuel ethanol fermentation.
    Bischoff KM; Liu S; Leathers TD; Worthington RE; Rich JO
    Biotechnol Bioeng; 2009 May; 103(1):117-22. PubMed ID: 19148876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must.
    Bonatelli ML; Ienczak JL; Labate CA
    Antonie Van Leeuwenhoek; 2019 Aug; 112(8):1177-1187. PubMed ID: 30830509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using drug-loaded pH-responsive poly(4-vinylpyridine) microspheres as a new strategy for intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation.
    Li M; Hu HW; Chen Z; Zhang YX; Li H
    World J Microbiol Biotechnol; 2018 Sep; 34(10):146. PubMed ID: 30206729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria.
    Cola P; Procópio DP; Alves ATC; Carnevalli LR; Sampaio IV; da Costa BLV; Basso TO
    Biotechnol Lett; 2020 Apr; 42(4):571-582. PubMed ID: 31974646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation.
    Romanens E; Freimüller Leischtfeld S; Volland A; Stevens MJA; Krähenmann U; Isele D; Fischer B; Meile L; Miescher Schwenninger S
    Int J Food Microbiol; 2019 Feb; 290():262-272. PubMed ID: 30408647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of lactic acid bacteria on cocoa bean fermentation.
    Ho VT; Zhao J; Fleet G
    Int J Food Microbiol; 2015 Jul; 205():54-67. PubMed ID: 25889523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast Derived LysA2 Can Control Bacterial Contamination in Ethanol Fermentation.
    Kim JS; Daum MA; Jin YS; Miller MJ
    Viruses; 2018 May; 10(6):. PubMed ID: 29795003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria.
    Rojo-Bezares B; Sáenz Y; Zarazaga M; Torres C; Ruiz-Larrea F
    Int J Food Microbiol; 2007 May; 116(1):32-6. PubMed ID: 17320991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mandarin essential oil as an antimicrobial in ethanolic fermentation: Effects on Limosilactobacillus fermentum and Saccharomyces cerevisiae.
    Varano A; Shirahigue LD; Azevedo FA; Altenhofen da Silva M; Ceccato-Antonini SR
    Lett Appl Microbiol; 2022 Jun; 74(6):981-991. PubMed ID: 35247276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
    Basso TO; Gomes FS; Lopes ML; de Amorim HV; Eggleston G; Basso LC
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):169-77. PubMed ID: 24198118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.
    Dellias MTF; Borges CD; Lopes ML; da Cruz SH; de Amorim HV; Tsai SM
    Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1631-1644. PubMed ID: 29478220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.
    Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2018 May; 34(6):80. PubMed ID: 29802468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.