These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 31595505)

  • 21. Eukaryotic algal phytochromes span the visible spectrum.
    Rockwell NC; Duanmu D; Martin SS; Bachy C; Price DC; Bhattacharya D; Worden AZ; Lagarias JC
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):3871-6. PubMed ID: 24567382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytochrome ancestry: sensors of bilins and light.
    Montgomery BL; Lagarias JC
    Trends Plant Sci; 2002 Aug; 7(8):357-66. PubMed ID: 12167331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for evolutionary relationship between archaeplastidal and cyanobacterial phytochromes based on their chromophore pockets.
    Gabriel E; Krauß N; Lamparter T
    Photochem Photobiol Sci; 2022 Nov; 21(11):1961-1974. PubMed ID: 35906526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.
    Esser C; Kuhn A; Groth G; Lercher MJ; Maurino VG
    Mol Biol Evol; 2014 May; 31(5):1089-101. PubMed ID: 24408912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family.
    Sharrock RA; Quail PH
    Genes Dev; 1989 Nov; 3(11):1745-57. PubMed ID: 2606345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary origin of phytochrome responses and signaling in land plants.
    Inoue K; Nishihama R; Kohchi T
    Plant Cell Environ; 2017 Nov; 40(11):2502-2508. PubMed ID: 28098347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytochrome evolution: a phylogenetic tree with the first complete sequence of phytochrome from a cryptogamic plant (Selaginella martensii spring).
    Hanelt S; Braun B; Marx S; Schneider-Poetsch HA
    Photochem Photobiol; 1992 Nov; 56(5):751-8. PubMed ID: 1475321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution.
    Wagner JR; Zhang J; Brunzelle JS; Vierstra RD; Forest KT
    J Biol Chem; 2007 Apr; 282(16):12298-309. PubMed ID: 17322301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytochrome evolution in green and nongreen plants.
    Mathews S
    J Hered; 2005; 96(3):197-204. PubMed ID: 15695552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytoplasmic phytochrome action.
    Rösler J; Jaedicke K; Zeidler M
    Plant Cell Physiol; 2010 Aug; 51(8):1248-54. PubMed ID: 20576692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bathy phytochromes in rhizobial soil bacteria.
    Rottwinkel G; Oberpichler I; Lamparter T
    J Bacteriol; 2010 Oct; 192(19):5124-33. PubMed ID: 20675484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic perspectives on the birth and spread of plastids.
    Archibald JM
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10147-53. PubMed ID: 25902528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytochromes and Phytochrome Interacting Factors.
    Pham VN; Kathare PK; Huq E
    Plant Physiol; 2018 Feb; 176(2):1025-1038. PubMed ID: 29138351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The evolution and function of blue and red light photoreceptors.
    Falciatore A; Bowler C
    Curr Top Dev Biol; 2005; 68():317-50. PubMed ID: 16125004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution.
    Ghoshroy S; Binder M; Tartar A; Robertson DL
    BMC Evol Biol; 2010 Jun; 10():198. PubMed ID: 20579371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Horizontal and endosymbiotic gene transfer in early plastid evolution.
    Ponce-Toledo RI; López-García P; Moreira D
    New Phytol; 2019 Oct; 224(2):618-624. PubMed ID: 31135958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytochromes from Agrobacterium fabrum.
    Lamparter T; Krauß N; Scheerer P
    Photochem Photobiol; 2017 May; 93(3):642-655. PubMed ID: 28500698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B.
    Eichenberg K; Bäurle I; Paulo N; Sharrock RA; Rüdiger W; Schäfer E
    FEBS Lett; 2000 Mar; 470(2):107-12. PubMed ID: 10734217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.