These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 31595640)
1. A Dual-Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Yao MS; Zheng JJ; Wu AQ; Xu G; Nagarkar SS; Zhang G; Tsujimoto M; Sakaki S; Horike S; Otake K; Kitagawa S Angew Chem Int Ed Engl; 2020 Jan; 59(1):172-176. PubMed ID: 31595640 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Ye RH; Chen JY; Huang DH; Wang YJ; Chen S Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735515 [TBL] [Abstract][Full Text] [Related]
3. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing. Yao MS; Lv XJ; Fu ZH; Li WH; Deng WH; Wu GD; Xu G Angew Chem Int Ed Engl; 2017 Dec; 56(52):16510-16514. PubMed ID: 29071780 [TBL] [Abstract][Full Text] [Related]
4. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. Koo WT; Kim SJ; Jang JS; Kim DH; Kim ID Adv Sci (Weinh); 2019 Nov; 6(21):1900250. PubMed ID: 31728270 [TBL] [Abstract][Full Text] [Related]
5. Fine Pore-Structure Engineering by Ligand Conformational Control of Naphthalene Diimide-Based Semiconducting Porous Coordination Polymers for Efficient Chemiresistive Gas Sensing. Xue Z; Zheng JJ; Nishiyama Y; Yao MS; Aoyama Y; Fan Z; Wang P; Kajiwara T; Kubota Y; Horike S; Otake KI; Kitagawa S Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202215234. PubMed ID: 36377418 [TBL] [Abstract][Full Text] [Related]
6. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397 [TBL] [Abstract][Full Text] [Related]
7. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process. Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945 [TBL] [Abstract][Full Text] [Related]
8. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks. Campbell MG; Liu SF; Swager TM; Dincă M J Am Chem Soc; 2015 Nov; 137(43):13780-3. PubMed ID: 26456526 [TBL] [Abstract][Full Text] [Related]
9. 2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves. Song X; Wang X; Li Y; Zheng C; Zhang B; Di CA; Li F; Jin C; Mi W; Chen L; Hu W Angew Chem Int Ed Engl; 2020 Jan; 59(3):1118-1123. PubMed ID: 31659842 [TBL] [Abstract][Full Text] [Related]
10. Conductive Stimuli-Responsive Coordination Network Linked with Bismuth for Chemiresistive Gas Sensing. Aykanat A; Jones CG; Cline E; Stolz RM; Meng Z; Nelson HM; Mirica KA ACS Appl Mater Interfaces; 2021 Dec; 13(50):60306-60318. PubMed ID: 34898182 [TBL] [Abstract][Full Text] [Related]
11. A General Synthesis of Nanostructured Conductive Metal-Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors. Huang C; Sun W; Jin Y; Guo Q; Mücke D; Chu X; Liao Z; Chandrasekhar N; Huang X; Lu Y; Chen G; Wang M; Liu J; Zhang G; Yu M; Qi H; Kaiser U; Xu G; Feng X; Dong R Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202313591. PubMed ID: 38011010 [TBL] [Abstract][Full Text] [Related]
12. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. Hong T; Lee C; Bak Y; Park G; Lee H; Kang S; Bae TH; Yoon DK; Park JG Small; 2024 May; 20(18):e2309469. PubMed ID: 38174621 [TBL] [Abstract][Full Text] [Related]
13. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Horike S; Umeyama D; Kitagawa S Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917 [TBL] [Abstract][Full Text] [Related]
14. Quantum Spin Liquid State in a Two-Dimensional Semiconductive Metal-Organic Framework. Misumi Y; Yamaguchi A; Zhang Z; Matsushita T; Wada N; Tsuchiizu M; Awaga K J Am Chem Soc; 2020 Sep; 142(39):16513-16517. PubMed ID: 32623880 [TBL] [Abstract][Full Text] [Related]
15. Dense Conductive Metal-Organic Frameworks as Robust Electrocatalysts for Biosensing. Niu K; Sun P; Chen J; Lu X Anal Chem; 2022 Dec; 94(49):17177-17185. PubMed ID: 36454682 [TBL] [Abstract][Full Text] [Related]
16. Van der Waals Heterostructured MOF-on-MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Yao MS; Xiu JW; Huang QQ; Li WH; Wu WW; Wu AQ; Cao LA; Deng WH; Wang GE; Xu G Angew Chem Int Ed Engl; 2019 Oct; 58(42):14915-14919. PubMed ID: 31356720 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and Applications of Porous Organosulfonate-Based Metal-Organic Frameworks. Zhang G; Fei H Top Curr Chem (Cham); 2019 Oct; 377(6):32. PubMed ID: 31654264 [TBL] [Abstract][Full Text] [Related]
18. From a Collapse-Prone, Insulating Ni-MOF-74 Analogue to Crystalline, Porous, and Electrically Conducting PEDOT@MOF Composites. Zhang S; Zhang W; Yadav A; Baker J; Saha S Inorg Chem; 2023 Nov; 62(46):18999-19005. PubMed ID: 37934947 [TBL] [Abstract][Full Text] [Related]
19. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two-Dimensional Metal-Organic Frameworks. Wang D; Ostresh S; Streater D; He P; Nyakuchena J; Ma Q; Zhang X; Neu J; Brudvig GW; Huang J Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202309505. PubMed ID: 37872121 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of honeycomb-like 2D π-conjugated metal-organic framework chemiresistors: conductivity and channels. Yao MS; Wang P; Gu YF; Koganezawa T; Ashitani H; Kubota Y; Wang ZM; Fan ZY; Otake KI; Kitagawa S Dalton Trans; 2021 Oct; 50(38):13236-13245. PubMed ID: 34485999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]