BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31595722)

  • 1. Automated microfluidic chip system for radiosynthesis of PET imaging probes.
    Lei M; Pan JZ; Xu GM; Du PZ; Tian M; Zhang H
    J Zhejiang Univ Sci B; 2019 Nov.; 20(11):865-867. PubMed ID: 31595722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.
    Dollé F
    J Labelled Comp Radiopharm; 2013; 56(3-4):65-7. PubMed ID: 24285311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiopharmaceutical chemistry for positron emission tomography.
    Li Z; Conti PS
    Adv Drug Deliv Rev; 2010 Aug; 62(11):1031-51. PubMed ID: 20854860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of non-standard PET radionuclides and the application of radiopharmaceuticals labeled with these nuclides.
    Welch MJ; Laforest R; Lewis JS
    Ernst Schering Res Found Workshop; 2007; (62):159-81. PubMed ID: 17172155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Microfluidic Devices for the Radiosynthesis of PET-imaging Probes.
    Elkawad H; Xu Y; Tian M; Jin C; Zhang H; Yu K; He Q
    Chem Asian J; 2022 Oct; 17(20):e202200579. PubMed ID: 35909081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of radionuclides and radiochemical impurities produced by in-house cyclotron irradiation and subsequent radiosynthesis of PET tracers.
    Ishiwata K; Hayashi K; Sakai M; Kawauchi S; Hasegawa H; Toyohara J
    Ann Nucl Med; 2017 Jan; 31(1):84-92. PubMed ID: 27744544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labelling with positron emitters of pnicogens and chalcogens.
    Ermert J
    J Labelled Comp Radiopharm; 2018 Mar; 61(3):179-195. PubMed ID: 29023892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic reactor for the radiosynthesis of PET radiotracers.
    Gillies JM; Prenant C; Chimon GN; Smethurst GJ; Perrie W; Hamblett I; Dekker B; Zweit J
    Appl Radiat Isot; 2006 Mar; 64(3):325-32. PubMed ID: 16290944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer.
    Wuest M; Trayner BJ; Grant TN; Jans HS; Mercer JR; Murray D; West FG; McEwan AJ; Wuest F; Cheeseman CI
    Nucl Med Biol; 2011 May; 38(4):461-75. PubMed ID: 21531283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals.
    Taggart MP; Tarn MD; Esfahani MM; Schofield DM; Brown NJ; Archibald SJ; Deakin T; Pamme N; Thompson LF
    Lab Chip; 2016 Apr; 16(9):1605-16. PubMed ID: 27044712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of diverse PET probes with limited resources: 24
    Collins J; Waldmann CM; Drake C; Slavik R; Ha NS; Sergeev M; Lazari M; Shen B; Chin FT; Moore M; Sadeghi S; Phelps ME; Murphy JM; van Dam RM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11309-11314. PubMed ID: 29073049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automated synthesis of ¹¹C-acetate as tumor PET tracer by simple modified solid-phase extraction purification.
    Tang X; Tang G; Nie D
    Appl Radiat Isot; 2013 Dec; 82():81-6. PubMed ID: 23974302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography.
    Brust P; van den Hoff J; Steinbach J
    Neurosci Bull; 2014 Oct; 30(5):777-811. PubMed ID: 25172118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography.
    Miller PW; Long NJ; Vilar R; Gee AD
    Angew Chem Int Ed Engl; 2008; 47(47):8998-9033. PubMed ID: 18988199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave accelerated labeling methods in the synthesis of radioligands for positron emission tomography imaging.
    Kallmerten AE; Alexander A; Wager KM; Jones GB
    Curr Radiopharm; 2011 Oct; 4(4):343-54. PubMed ID: 22202157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A solvent resistant lab-on-chip platform for radiochemistry applications.
    Rensch C; Lindner S; Salvamoser R; Leidner S; Böld C; Samper V; Taylor D; Baller M; Riese S; Bartenstein P; Wängler C; Wängler B
    Lab Chip; 2014 Jul; 14(14):2556-64. PubMed ID: 24879121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.
    Vallabhajosula S
    Semin Nucl Med; 2007 Nov; 37(6):400-19. PubMed ID: 17920348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction.
    Tarn MD; Pascali G; De Leonardis F; Watts P; Salvadori PA; Pamme N
    J Chromatogr A; 2013 Mar; 1280():117-21. PubMed ID: 23375767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and biological evaluation of ¹⁸F-labeled fluoropropyl tryptophan analogs as potential PET probes for tumor imaging.
    Chiotellis A; Mu L; Müller A; Selivanova SV; Keller C; Schibli R; Krämer SD; Ametamey SM
    Eur J Med Chem; 2013; 70():768-80. PubMed ID: 24239624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.