BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31595746)

  • 1. In-Depth Two-Stage Transcriptional Reprogramming and Evolutionary Engineering of
    Zhang C; Xue Q; Hou J; Mohsin A; Zhang M; Guo M; Zhu Y; Bao J; Wang J; Xiao W; Cao L
    J Agric Food Chem; 2019 Oct; 67(43):12002-12012. PubMed ID: 31595746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose.
    Cao L; Tang X; Zhang X; Zhang J; Tian X; Wang J; Xiong M; Xiao W
    Metab Eng; 2014 Jul; 24():150-9. PubMed ID: 24858789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae.
    Zhang X; Wang J; Zhang W; Hou JY; Xiao W; Cao L
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):7207-7217. PubMed ID: 29946930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.
    Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K
    J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR; Skerker JM; Kang W; Lesmana A; Wei N; Arkin AP; Jin YS
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.
    Zha J; Shen M; Hu M; Song H; Yuan Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
    Feng Q; Liu ZL; Weber SA; Li S
    PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.
    Eliasson A; Christensson C; Wahlbom CF; Hahn-Hägerdal B
    Appl Environ Microbiol; 2000 Aug; 66(8):3381-6. PubMed ID: 10919795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.
    Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.
    Shen Y; Chen X; Peng B; Chen L; Hou J; Bao X
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1079-91. PubMed ID: 23053078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose.
    Gao X; Caiyin Q; Zhao F; Wu Y; Lu W
    J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.