These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31595883)
1. Evaluation of thermostable catalase-peroxidase AfKatG supplementation on toxicity of residual hydrogen peroxide in cultivation media of lactic acid bacteria from starter cultures. Struhárňanská E; Chovanová M; Rybecká S; Mikulášová M; Levarski Z; Zámocký M; Stuchlík S; Turňa J Gen Physiol Biophys; 2019 Sep; 38(5):455-460. PubMed ID: 31595883 [TBL] [Abstract][Full Text] [Related]
2. A rapid method for detection of catalase-positive and catalase-negative bacteria based on monitoring of hydrogen peroxide evolution at a composite peroxidase biosensor. Serra B; Zhang J; Morales MD; Guzmán-Vázquez de Prada A; Reviejo AJ; Pingarrón JM Talanta; 2008 May; 75(4):1134-9. PubMed ID: 18585194 [TBL] [Abstract][Full Text] [Related]
3. Isolation of lactic acid bacteria exhibiting high scavenging activity for environmental hydrogen peroxide from fermented foods and its two scavenging enzymes for hydrogen peroxide. Watanabe A; Kaneko C; Hamada Y; Takeda K; Kimata S; Matsumoto T; Abe A; Tanaka N; Okada S; Uchino M; Satoh J; Nakagawa J; Niimura Y J Gen Appl Microbiol; 2016; 62(2):75-82. PubMed ID: 27118075 [TBL] [Abstract][Full Text] [Related]
4. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity. Lončar N; Fraaije MW Appl Microbiol Biotechnol; 2015 Mar; 99(5):2225-32. PubMed ID: 25227535 [TBL] [Abstract][Full Text] [Related]
5. Antifungal and antibacterial effects of newly created lactic acid bacteria associations depending on cultivation media and duration of cultivation. Matevosyan L; Bazukyan I; Trchounian A BMC Microbiol; 2019 May; 19(1):102. PubMed ID: 31101075 [TBL] [Abstract][Full Text] [Related]
6. Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Zotta T; Ricciardi A; Ianniello RG; Storti LV; Glibota NA; Parente E Food Microbiol; 2018 Dec; 76():117-127. PubMed ID: 30166132 [TBL] [Abstract][Full Text] [Related]
7. Catalase is the bacteria-derived detoxifying substance against paramecia-killing toxin in wheat grass powder infusion. Mizobuchi N; Yokoigawa K; Harumoto T; Fujisawa H; Takagi Y J Eukaryot Microbiol; 2003; 50(4):299-303. PubMed ID: 15132174 [TBL] [Abstract][Full Text] [Related]
8. Effect of selenium supplements on the antioxidant activity and nitrite degradation of lactic acid bacteria. Chen Y; Li Q; Xia C; Yang F; Xu N; Wu Q; Hu Y; Xia L; Wang C; Zhou M World J Microbiol Biotechnol; 2019 Mar; 35(4):61. PubMed ID: 30919142 [TBL] [Abstract][Full Text] [Related]
9. Screening of bacterial isolates from polluted soils exhibiting catalase and peroxidase activity and diversity of their responses to oxidative stress. Bucková M; Godocíková J; Zámocký M; Polek B Curr Microbiol; 2010 Oct; 61(4):241-7. PubMed ID: 20145932 [TBL] [Abstract][Full Text] [Related]
10. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate. Kawasaki K; Kamagata Y Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821549 [TBL] [Abstract][Full Text] [Related]
11. Cultivation media for lactic acid bacteria used in dairy products. Hayek SA; Gyawali R; Aljaloud SO; Krastanov A; Ibrahim SA J Dairy Res; 2019 Nov; 86(4):490-502. PubMed ID: 31722773 [TBL] [Abstract][Full Text] [Related]
12. HYDROGEN PEROXIDE FORMATION AND CATALASE ACTIVITY IN THE LACTIC ACID BACTERIA. WHITTENBURY R J Gen Microbiol; 1964 Apr; 35():13-26. PubMed ID: 14167645 [No Abstract] [Full Text] [Related]
13. Isolates of Comamonas spp. exhibiting catalase and peroxidase activities and diversity of their responses to oxidative stress. Bucková M; Godocíková J; Zámocký M; Polek B Ecotoxicol Environ Saf; 2010 Oct; 73(7):1511-6. PubMed ID: 20678795 [TBL] [Abstract][Full Text] [Related]
14. Selection of Riboflavin Overproducing Strains of Lactic Acid Bacteria and Riboflavin Direct Quantification by Fluorescence. Russo P; De Simone N; Capozzi V; Mohedano ML; Ruiz-Masó JÁ; Del Solar G; López P; Spano G Methods Mol Biol; 2021; 2280():3-14. PubMed ID: 33751425 [TBL] [Abstract][Full Text] [Related]
15. High production of catalase in hydrogen peroxide-resistant human leukemia HL-60 cell lines. Kasugai I; Yamada M Leuk Res; 1992; 16(2):173-9. PubMed ID: 1312186 [TBL] [Abstract][Full Text] [Related]
16. Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis. Baureder M; Reimann R; Hederstedt L FEMS Microbiol Lett; 2012 Jun; 331(2):160-4. PubMed ID: 22486165 [TBL] [Abstract][Full Text] [Related]
17. A kinetic analysis of the catalase activity of myeloperoxidase. Kettle AJ; Winterbourn CC Biochemistry; 2001 Aug; 40(34):10204-12. PubMed ID: 11513598 [TBL] [Abstract][Full Text] [Related]
18. Succession sequence of lactic acid bacteria driven by environmental factors and substrates throughout the brewing process of Shanxi aged vinegar. Zheng Y; Mou J; Niu J; Yang S; Chen L; Xia M; Wang M Appl Microbiol Biotechnol; 2018 Mar; 102(6):2645-2658. PubMed ID: 29430584 [TBL] [Abstract][Full Text] [Related]
19. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Abucayon E; Ke N; Cornut R; Patelunas A; Miller D; Nishiguchi MK; Zoski CG Anal Chem; 2014 Jan; 86(1):498-505. PubMed ID: 24328342 [TBL] [Abstract][Full Text] [Related]
20. Potential application of catalase-peroxidase from Comamonas terrigena N3H in the biodegradation of phenolic compounds. Zámocký M; Godocíková J; Koller F; Polek B Antonie Van Leeuwenhoek; 2001 Jun; 79(2):109-17. PubMed ID: 11519996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]