These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31596008)

  • 41. Syntheses and Crystal Structures of Ruthenium Complexes of 1,4,8,11-Tetraazacyclotetradecane, Tris(2-aminoethyl)amine (tren), and Bis(2-aminoethyl)(iminomethyl)amine. A Microporous Layered Structure Consisting of {[K(tren)](2)[RuCl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[RuCl(6)]}(n)()(n)()(+).
    Sakai K; Yamada Y; Tsubomura T
    Inorg Chem; 1996 May; 35(11):3163-3172. PubMed ID: 11666513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structures, spectroscopic properties and redox potentials of quaterpyridyl Ru(II) photosensitizer and its derivatives for solar energy cell: a density functional study.
    Pan QJ; Guo YR; Li L; Odoh SO; Fu HG; Zhang HX
    Phys Chem Chem Phys; 2011 Aug; 13(32):14481-9. PubMed ID: 21735037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.
    Al-Noaimi M; Awwadi FF; Mansi A; Abdel-Rahman OS; Hammoudeh A; Warad I
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():828-39. PubMed ID: 25150434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazine-unusual building blocks for the synthesis of photochemical molecular devices.
    Schwalbe M; Karnahl M; Görls H; Chartrand D; Laverdiere F; Hanan GS; Tschierlei S; Dietzek B; Schmitt M; Popp J; Vos JG; Rau S
    Dalton Trans; 2009 May; (20):4012-22. PubMed ID: 19440601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Example of highly stereoregulated ruthenium amidine complex formation: synthesis, crystal structures, and spectral and redox properties of the complexes [Ru(II)(trpy)[NC(5)H(4)-CH=N-N(C(6)H(5))C(CH(3))=NH]](ClO(4))(2) (1) and [Ru(II)(trpy)(NC(5)H(4)-CH=N-NH-C(6)H(5))Cl]ClO(4) (2) (trpy = 2,2':6',2"-terpyridine).
    Mondal B; Puranik VG; Lahiri GK
    Inorg Chem; 2002 Nov; 41(22):5831-6. PubMed ID: 12401090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cobalt(III) complexes of monodentate N9-bound adeninate (ade-), [Co(ade-kappaN9)Cl(en)2]+ (en = 1,2-diaminoethane): syntheses, crystal structures, and protonation behaviors of the geometrical isomers.
    Suzuki T; Hirai Y; Monjushiro H; Kaizaki S
    Inorg Chem; 2004 Oct; 43(20):6435-44. PubMed ID: 15446895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective Preparation of a Heteroleptic Cyclometallated Ruthenium Complex Capable of Undergoing Photosubstitution of a Bidentate Ligand.
    Cuello-Garibo JA; James CC; Siegler MA; Hopkins SL; Bonnet S
    Chemistry; 2019 Jan; 25(5):1260-1268. PubMed ID: 30318782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homo- and Heteronuclear Ruthenium and Osmium Complexes Containing an Asymmetric Pyrazine-Based Bridging Ligand.
    Hage R; Lempers HE; Haasnoot JG; Reedijk J; Weldon FM; Vos JG
    Inorg Chem; 1997 Jul; 36(14):3139-3145. PubMed ID: 11669969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probing ruthenium-acetylide bonding interactions: synthesis, electrochemistry, and spectroscopic studies of acetylide-ruthenium complexes supported by tetradentate macrocyclic amine and diphosphine ligands.
    Wong CY; Che CM; Chan MC; Han J; Leung KH; Phillips DL; Wong KY; Zhu N
    J Am Chem Soc; 2005 Oct; 127(40):13997-4007. PubMed ID: 16201822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tuning the rotational behavior of lopsided heterocyclic nitrogen ligands (L) in octahedral cis-[Ru(bpy)2(L)2](PF6)2 complexes. A variable-temperature 1H NMR study.
    Velders AH; Hotze AC; van Albada GA; Haasnoot JG; Reedijk J
    Inorg Chem; 2000 Sep; 39(18):4073-80. PubMed ID: 11198862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative photo-release of nitric oxide from isomers of substituted terpyridinenitrosylruthenium(II) complexes: experimental and computational investigations.
    Akl J; Sasaki I; Lacroix PG; Malfant I; Mallet-Ladeira S; Vicendo P; Farfán N; Santillan R
    Dalton Trans; 2014 Sep; 43(33):12721-33. PubMed ID: 25011547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ruthenium bis-diimine complexes with a chelating thioether ligand: delineating 1,10-phenanthrolinyl and 2,2'-bipyridyl ligand substituent effects.
    Al-Rawashdeh NA; Chatterjee S; Krause JA; Connick WB
    Inorg Chem; 2014 Jan; 53(1):294-307. PubMed ID: 24325318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ruthenium(II) and osmium(II) complexes bearing bipyridine and the N-heterocyclic carbene-based C^N^C pincer ligand: an experimental and density functional theory study.
    Chung LH; Cho KS; England J; Chan SC; Wieghardt K; Wong CY
    Inorg Chem; 2013 Sep; 52(17):9885-96. PubMed ID: 23952294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ruthenium complexes of 2-[(4-(arylamino)phenyl)azo]pyridine formed via regioselective phenyl ring amination of coordinated 2-(phenylazo)pyridine: isolation of products, X-ray structure, and redox and optical properties.
    Das C; Saha A; Hung CH; Lee GH; Peng SM; Goswami S
    Inorg Chem; 2003 Jan; 42(1):198-204. PubMed ID: 12513095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Syntheses and electronic properties of rhodium(III) complexes bearing a redox-active ligand.
    Wanniarachchi S; Liddle BJ; Kizer B; Hewage JS; Lindeman SV; Gardinier JR
    Inorg Chem; 2012 Oct; 51(20):10572-80. PubMed ID: 23035689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Valence and spin situations in isomeric [(bpy)Ru(Q')2]n (Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine). An experimental and DFT analysis.
    Das D; Mondal TK; Chowdhury AD; Weisser F; Schweinfurth D; Sarkar B; Mobin SM; Urbanos FA; Jiménez-Aparicio R; Lahiri GK
    Dalton Trans; 2011 Sep; 40(33):8377-90. PubMed ID: 21776528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis, spectral and catalytic dehydrogenation studies of ruthenium complexes containing NO bidentate ligands.
    Shoair AF; El-Bindary AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():490-6. PubMed ID: 24840490
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanistic insights into the chemistry of RuII complexes containing Cl and DMSO ligands.
    Mola J; Romero I; Rodríguez M; Bozoglian F; Poater A; Solà M; Parella T; Benet-Buchholz J; Fontrodona X; Llobet A
    Inorg Chem; 2007 Dec; 46(25):10707-16. PubMed ID: 18001116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Further Insight into the Lability of MeCN Ligands of Cytotoxic Cycloruthenated Compounds: Evidence for the Antisymbiotic Effect Trans to the Carbon Atom at the Ru Center.
    Barbosa AS; Werlé C; Colunga CO; Rodríguez CF; Toscano RA; Le Lagadec R; Pfeffer M
    Inorg Chem; 2015 Aug; 54(15):7617-26. PubMed ID: 26172528
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis.
    Renouard T; Fallahpour RA; Nazeeruddin MK; Humphry-Baker R; Gorelsky SI; Lever AB; Grätzel M
    Inorg Chem; 2002 Jan; 41(2):367-78. PubMed ID: 11800627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.