BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31596053)

  • 1. Molecular expression profiles of morphologically defined hippocampal neuron types: Empirical evidence and relational inferences.
    White CM; Rees CL; Wheeler DW; Hamilton DJ; Ascoli GA
    Hippocampus; 2020 May; 30(5):472-487. PubMed ID: 31596053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus.
    Wheeler DW; White CM; Rees CL; Komendantov AO; Hamilton DJ; Ascoli GA
    Elife; 2015 Sep; 4():. PubMed ID: 26402459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach.
    Hamilton DJ; White CM; Rees CL; Wheeler DW; Ascoli GA
    J Pharm Biomed Anal; 2017 Sep; 144():269-278. PubMed ID: 28549853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization.
    Attili SM; Moradi K; Wheeler DW; Ascoli GA
    Eur J Neurosci; 2022 Apr; 55(7):1724-1741. PubMed ID: 35301768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation.
    Moradi K; Ascoli GA
    Hippocampus; 2020 Apr; 30(4):314-331. PubMed ID: 31472001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap.
    Tecuatl C; Wheeler DW; Sutton N; Ascoli GA
    J Neurosci; 2021 Feb; 41(8):1665-1683. PubMed ID: 33361464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    Elife; 2024 Feb; 12():. PubMed ID: 38345923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    bioRxiv; 2024 Jan; ():. PubMed ID: 37425693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative firing pattern phenotyping of hippocampal neuron types.
    Komendantov AO; Venkadesh S; Rees CL; Wheeler DW; Hamilton DJ; Ascoli GA
    Sci Rep; 2019 Nov; 9(1):17915. PubMed ID: 31784578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat.
    Caballero-Bleda M; Witter MP
    Exp Brain Res; 1994; 101(1):93-108. PubMed ID: 7843307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex.
    Witter MP; Amaral DG
    J Comp Neurol; 1991 May; 307(3):437-59. PubMed ID: 1713237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.
    Rees CL; Wheeler DW; Hamilton DJ; White CM; Komendantov AO; Ascoli GA
    eNeuro; 2016; 3(6):. PubMed ID: 27896314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo.
    Sanchez-Aguilera A; Wheeler DW; Jurado-Parras T; Valero M; Nokia MS; Cid E; Fernandez-Lamo I; Sutton N; García-Rincón D; de la Prida LM; Ascoli GA
    PLoS Biol; 2021 May; 19(5):e3001213. PubMed ID: 33956790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern separation and completion of distinct axonal inputs transmitted via micro-tunnels between co-cultured hippocampal dentate, CA3, CA1 and entorhinal cortex networks.
    Poli D; Wheeler BC; DeMarse TB; Brewer GJ
    J Neural Eng; 2018 Aug; 15(4):046009. PubMed ID: 29623900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties.
    Hamilton DJ; Wheeler DW; White CM; Rees CL; Komendantov AO; Bergamino M; Ascoli GA
    Brain Inform; 2017 Mar; 4(1):1-12. PubMed ID: 27747821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons.
    Cembrowski MS; Wang L; Sugino K; Shields BC; Spruston N
    Elife; 2016 Apr; 5():e14997. PubMed ID: 27113915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals.
    Bartesaghi R; Migliore M; Gessi T
    Neuroscience; 2006 Sep; 142(1):247-65. PubMed ID: 16844310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.