BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31596076)

  • 21. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases.
    Lien Y; Lachowicz JC; Mendauletova A; Zizola C; Ngendahimana T; Kostenko A; Eaton SS; Latham JA; Grove TL
    ACS Chem Biol; 2024 Feb; 19(2):370-379. PubMed ID: 38295270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. B
    Benjdia A; Berteau O
    Curr Opin Struct Biol; 2023 Dec; 83():102725. PubMed ID: 37931378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic insights into class B radical-S-adenosylmethionine methylases: ubiquitous tailoring enzymes in natural product biosynthesis.
    Zhou S; Alkhalaf LM; de Los Santos EL; Challis GL
    Curr Opin Chem Biol; 2016 Dec; 35():73-79. PubMed ID: 27632683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery and Biosynthesis of Streptosactin, a Sactipeptide with an Alternative Topology Encoded by Commensal Bacteria in the Human Microbiome.
    Bushin LB; Covington BC; Rued BE; Federle MJ; Seyedsayamdost MR
    J Am Chem Soc; 2020 Sep; 142(38):16265-16275. PubMed ID: 32845143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
    Fernandez-Cantos MV; Garcia-Morena D; Yi Y; Liang L; Gómez-Vázquez E; Kuipers OP
    Front Microbiol; 2023; 14():1219272. PubMed ID: 37469430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guidelines for Determining the Structures of Radical SAM Enzyme-Catalyzed Modifications in the Biosynthesis of RiPP Natural Products.
    Bushin LB; Seyedsayamdost MR
    Methods Enzymol; 2018; 606():439-460. PubMed ID: 30097102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial cyclophane-containing RiPPs from radical SAM enzymes.
    Phan CS; Morinaka BI
    Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RaS-RiPPs in Streptococci and the Human Microbiome.
    Clark KA; Bushin LB; Seyedsayamdost MR
    ACS Bio Med Chem Au; 2022 Aug; 2(4):328-339. PubMed ID: 35996476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides
    Lu J; Li Y; Bai Z; Lv H; Wang H
    Nat Prod Rep; 2021 May; 38(5):981-992. PubMed ID: 33185226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides.
    Truman AW
    Beilstein J Org Chem; 2016; 12():1250-68. PubMed ID: 27559376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S-Adenosylmethionine-dependent radical-based modification of biological macromolecules.
    Atta M; Mulliez E; Arragain S; Forouhar F; Hunt JF; Fontecave M
    Curr Opin Struct Biol; 2010 Dec; 20(6):684-92. PubMed ID: 20951571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charting an Unexplored Streptococcal Biosynthetic Landscape Reveals a Unique Peptide Cyclization Motif.
    Bushin LB; Clark KA; Pelczer I; Seyedsayamdost MR
    J Am Chem Soc; 2018 Dec; 140(50):17674-17684. PubMed ID: 30398325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis.
    Mydy LS; Hungerford J; Chigumba DN; Konwerski JR; Jantzi SC; Wang D; Smith JL; Kersten RD
    Nat Chem Biol; 2024 Apr; 20(4):530-540. PubMed ID: 38355722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Lanthipeptide-like N-Terminal Leader Region Guides Peptide Epimerization by Radical SAM Epimerases: Implications for RiPP Evolution.
    Fuchs SW; Lackner G; Morinaka BI; Morishita Y; Asai T; Riniker S; Piel J
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12330-3. PubMed ID: 27584723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate.
    Zhang Y; Li K; Yang G; McBride JL; Bruner SD; Ding Y
    Nat Commun; 2018 May; 9(1):1780. PubMed ID: 29725007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides.
    Chekan JR; Mydy LS; Pasquale MA; Kersten RD
    Nat Prod Rep; 2024 Feb; ():. PubMed ID: 38411572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution and Substrate Specificity of the Thioether-Forming Radical
    Precord TW; Mahanta N; Mitchell DA
    ACS Chem Biol; 2019 Sep; 14(9):1981-1989. PubMed ID: 31449382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides.
    Zhong G
    ACS Bio Med Chem Au; 2023 Oct; 3(5):371-388. PubMed ID: 37876494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role.
    Cheek J; Broderick JB
    J Biol Inorg Chem; 2001 Mar; 6(3):209-26. PubMed ID: 11315557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
    Flühe L; Marahiel MA
    Curr Opin Chem Biol; 2013 Aug; 17(4):605-12. PubMed ID: 23891473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.