These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31596076)

  • 61. The Radical S-Adenosyl-l-methionine Enzyme MftC Catalyzes an Oxidative Decarboxylation of the C-Terminus of the MftA Peptide.
    Bruender NA; Bandarian V
    Biochemistry; 2016 May; 55(20):2813-6. PubMed ID: 27158836
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cobalamin-dependent radical S-adenosyl-l-methionine enzymes in natural product biosynthesis.
    Wang SC
    Nat Prod Rep; 2018 Aug; 35(8):707-720. PubMed ID: 30079906
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes.
    Guo Q; Morinaka BI
    Curr Opin Chem Biol; 2024 Jun; 81():102483. PubMed ID: 38917731
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link.
    Bruender NA; Wilcoxen J; Britt RD; Bandarian V
    Biochemistry; 2016 Apr; 55(14):2122-34. PubMed ID: 27007615
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thuricin Z: A Narrow-Spectrum Sactibiotic that Targets the Cell Membrane.
    Mo T; Ji X; Yuan W; Mandalapu D; Wang F; Zhong Y; Li F; Chen Q; Ding W; Deng Z; Yu S; Zhang Q
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18793-18797. PubMed ID: 31565827
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thioether crosslinkages created by a radical SAM enzyme.
    Zhang Q; Yu Y
    Chembiochem; 2012 May; 13(8):1097-9. PubMed ID: 22556103
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides.
    Wang M; Fage CD; He Y; Mi J; Yang Y; Li F; An X; Fan H; Song L; Zhu S; Tong Y
    Front Bioeng Biotechnol; 2021; 9():741364. PubMed ID: 34631682
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzymology of acyl chain macrocyclization in natural product biosynthesis.
    Kohli RM; Walsh CT
    Chem Commun (Camb); 2003 Feb; (3):297-307. PubMed ID: 12613585
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
    Buis JM; Broderick JB
    Arch Biochem Biophys; 2005 Jan; 433(1):288-96. PubMed ID: 15581584
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Leveraging Substrate Promiscuity of a Radical
    Eastman KAS; Kincannon WM; Bandarian V
    ACS Cent Sci; 2022 Aug; 8(8):1209-1217. PubMed ID: 36032765
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Bifunctional Leader Peptidase/ABC Transporter Protein Is Involved in the Maturation of the Lasso Peptide Cochonodin I from
    Hegemann JD; Jeanne Dit Fouque K; Santos-Fernandez M; Fernandez-Lima F
    J Nat Prod; 2021 Oct; 84(10):2683-2691. PubMed ID: 34597519
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel types of RiPP-modifying enzymes.
    Richter D; Piel J
    Curr Opin Chem Biol; 2024 Jun; 80():102463. PubMed ID: 38729090
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study.
    Krebs C; Broderick WE; Henshaw TF; Broderick JB; Huynh BH
    J Am Chem Soc; 2002 Feb; 124(6):912-3. PubMed ID: 11829592
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis.
    Gu W; Sardar D; Pierce E; Schmidt EW
    J Am Chem Soc; 2018 Nov; 140(47):16213-16221. PubMed ID: 30387998
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates.
    Walker JA; Hamlish N; Tytla A; Brauer DD; Francis MB; Schepartz A
    ACS Cent Sci; 2022 Apr; 8(4):473-482. PubMed ID: 35505866
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Current Advancements in Sactipeptide Natural Products.
    Chen Y; Wang J; Li G; Yang Y; Ding W
    Front Chem; 2021; 9():595991. PubMed ID: 34095082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.