These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31596269)

  • 1. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes.
    Malakootian M; Ahmadian M
    Water Sci Technol; 2019 Aug; 80(3):587-596. PubMed ID: 31596269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of CoFe
    Malakootian M; Nasiri A; Mahdizadeh H
    Water Sci Technol; 2018 Dec; 78(10):2158-2170. PubMed ID: 30629544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced degradation of micropollutants by zero-valent aluminum activated persulfate: assessment of toxicity and genotoxic activity.
    Olmez-Hanci T; Arslan-Alaton I; Doğan M; Khoei S; Fakhri H; Korkmaz G
    Water Sci Technol; 2017 Dec; 76(11-12):3195-3204. PubMed ID: 29235998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation.
    Barışçı S; Turkay O
    Water Sci Technol; 2016; 73(7):1673-9. PubMed ID: 27054740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli.
    Ye JS; Liu J; Ou HS; Wang LL
    Chemosphere; 2016 Dec; 165():311-319. PubMed ID: 27664520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.
    Ahmadi M; Ghanbari F
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19350-61. PubMed ID: 27370537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation.
    Cuprys A; Thomson P; Ouarda Y; Suresh G; Rouissi T; Kaur Brar S; Drogui P; Surampalli RY
    J Hazard Mater; 2020 May; 389():121890. PubMed ID: 31862355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of ciprofloxacin from water by birnessite.
    Jiang WT; Chang PH; Wang YS; Tsai Y; Jean JS; Li Z; Krukowski K
    J Hazard Mater; 2013 Apr; 250-251():362-9. PubMed ID: 23474410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes.
    Milh H; Yu X; Cabooter D; Dewil R
    Sci Total Environ; 2021 Apr; 764():144510. PubMed ID: 33387769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of ciprofloxacin degradation in reclaimed water by UV/chlorine and UV/persulfate advanced oxidation processes.
    Yang H; Li Y; Chen Y; Ye G; Sun X
    Water Environ Res; 2019 Dec; 91(12):1576-1588. PubMed ID: 31100181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process.
    Hassani A; Karaca M; Karaca S; Khataee A; Açışlı Ö; Yılmaz B
    J Environ Manage; 2018 Apr; 211():53-62. PubMed ID: 29408083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotic ciprofloxacin removal from aqueous solutions by electrochemically activated persulfate process: Optimization, degradation pathways, and toxicology assessment.
    Yakamercan E; Aygün A; Simsek H
    J Environ Sci (China); 2024 Sep; 143():85-98. PubMed ID: 38644026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Fe
    Huang A; Zhi D; Tang H; Jiang L; Luo S; Zhou Y
    Sci Total Environ; 2020 Jun; 720():137560. PubMed ID: 32143046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bentonite for ciprofloxacin removal from aqueous solution.
    Genç N; Can Dogan E; Yurtsever M
    Water Sci Technol; 2013; 68(4):848-55. PubMed ID: 23985515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic oxidation of ciprofloxacin by Co-Ce-Zr/γ-Al
    Liu Y; Ma Y; Wan J; Wang Y; Sun J; Xue Y
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43815-43830. PubMed ID: 33840030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed discharge plasma induced WO
    Guo H; Jiang N; Wang H; Shang K; Lu N; Li J; Wu Y
    Chemosphere; 2019 Sep; 230():190-200. PubMed ID: 31103865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption mechanism and effect of moisture contents on ciprofloxacin removal by three-dimensional porous graphene hydrogel.
    Yu F; Sun Y; Yang M; Ma J
    J Hazard Mater; 2019 Jul; 374():195-202. PubMed ID: 31003120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the electro-activated persulfate process in dye removal using graphene oxide nanoparticle.
    Ayati B; Ghorbani Z
    Water Sci Technol; 2021 May; 83(9):2169-2182. PubMed ID: 33989184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous flow sequencing bed biofilm reactor bio-digested landfill leachate treatment using electrocoagulation-persulfate.
    Dan NH; Le Luu T
    J Environ Manage; 2021 Nov; 297():113409. PubMed ID: 34346395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual promoted ciprofloxacin degradation by Fe
    Hu C; Chen M; Wang L; Ding Y; Li Q; Li X; Deng J
    Chemosphere; 2023 Sep; 336():139202. PubMed ID: 37331661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.