These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31596292)

  • 1. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction.
    Kazoe Y; Ugajin T; Ohta R; Mawatari K; Kitamori T
    Lab Chip; 2019 Nov; 19(22):3844-3852. PubMed ID: 31596292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable Formation of Aqueous/Organic Parallel Two-phase Flow in Nanochannels with Partial Surface Modification.
    Sano H; Kazoe Y; Kitamori T
    Anal Sci; 2021 Nov; 37(11):1611-1616. PubMed ID: 34054008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtoliter nanofluidic valve utilizing glass deformation.
    Kazoe Y; Pihosh Y; Takahashi H; Ohyama T; Sano H; Morikawa K; Mawatari K; Kitamori T
    Lab Chip; 2019 Apr; 19(9):1686-1694. PubMed ID: 30942790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics.
    Nakao T; Kazoe Y; Morikawa K; Lin L; Mawatari K; Kitamori T
    Analyst; 2020 Apr; 145(7):2669-2675. PubMed ID: 32049074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanochannel chromatography and photothermal optical diffraction: Femtoliter sample separation and label-free zeptomole detection.
    Tsuyama Y; Morikawa K; Mawatari K
    J Chromatogr A; 2020 Aug; 1624():461265. PubMed ID: 32540055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtoliter-Droplet Mass Spectrometry Interface Utilizing Nanofluidics for Ultrasmall and High-Sensitivity Analysis.
    Takagi Y; Kazoe Y; Morikawa K; Kitamori T
    Anal Chem; 2022 Jul; 94(28):10074-10081. PubMed ID: 35793145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fluidic control method for nanofluidics by solvent-solvent interaction in a hybrid chip.
    Fu G; Zheng Z; Li X; Sun Y; Chen H
    Lab Chip; 2015 Feb; 15(4):1004-8. PubMed ID: 25563690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels.
    Kazoe Y; Ikeda K; Mino K; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2023 Jun; 39(6):779-784. PubMed ID: 36884162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimension-reconfigurable bubble film nanochannel for wetting based sensing.
    Ma Y; Sun M; Duan X; van den Berg A; Eijkel JCT; Xie Y
    Nat Commun; 2020 Feb; 11(1):814. PubMed ID: 32041959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current.
    Morikawa K; Kazumi H; Tsuyama Y; Ohta R; Kitamori T
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended-nano chromatography.
    Shimizu H; Smirnova A; Mawatari K; Kitamori T
    J Chromatogr A; 2017 Mar; 1490():11-20. PubMed ID: 27623065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device.
    Morikawa K; Kazoe Y; Takagi Y; Tsuyama Y; Pihosh Y; Tsukahara T; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33182488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies.
    Ulmer CZ; Jones CM; Yost RA; Garrett TJ; Bowden JA
    Anal Chim Acta; 2018 Dec; 1037():351-357. PubMed ID: 30292311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network.
    Tokeshi M; Minagawa T; Uchiyama K; Hibara A; Sato K; Hisamoto H; Kitamori T
    Anal Chem; 2002 Apr; 74(7):1565-71. PubMed ID: 12033246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano X-ray diffractometry device for nanofluidics.
    Mawatari K; Koreeda H; Ohara K; Kohara S; Yoshida K; Yamaguchi T; Kitamori T
    Lab Chip; 2018 Apr; 18(8):1259-1264. PubMed ID: 29594269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-driven flow control system for nanofluidic chemical process.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Kitamori T
    J Chromatogr A; 2006 Dec; 1137(2):256-62. PubMed ID: 17129585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics.
    Yamamoto K; Morikawa K; Shimizu H; Sano H; Kazoe Y; Kitamori T
    Lab Chip; 2022 Mar; 22(6):1162-1170. PubMed ID: 35133382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio.
    Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B
    Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection.
    Tsuyama Y; Morikawa K; Mawatari K
    Nanoscale; 2021 May; 13(19):8855-8863. PubMed ID: 33949427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.