These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31596292)

  • 21. Extended nanofluidic immunochemical reaction with femtoliter sample volumes.
    Shirai K; Mawatari K; Kitamori T
    Small; 2014 Apr; 10(8):1514-22. PubMed ID: 24339226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels.
    Hibara A; Nonaka M; Hisamoto H; Uchiyama K; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2002 Apr; 74(7):1724-8. PubMed ID: 12033266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Super-Resolution Defocusing Nanoparticle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows.
    Kazoe Y; Shibata K; Kitamori T
    Anal Chem; 2021 Oct; 93(39):13260-13267. PubMed ID: 34559530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis.
    Günther A; Jensen KF
    Lab Chip; 2006 Dec; 6(12):1487-503. PubMed ID: 17203152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis.
    Morikawa K; Ohta R; Mawatari K; Kitamori T
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels.
    Ishibashi R; Mawatari K; Kitamori T
    Small; 2012 Apr; 8(8):1237-42. PubMed ID: 22354868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductance Interplay in Ion Concentration Polarization across 1D Nanochannels: Microchannel Surface Shunt and Nanochannel Conductance.
    Ahmed Z; Bu Y; Yobas L
    Anal Chem; 2020 Jan; 92(1):1252-1259. PubMed ID: 31804063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve.
    Mawatari K; Kubota S; Xu Y; Priest C; Sedev R; Ralston J; Kitamori T
    Anal Chem; 2012 Dec; 84(24):10812-6. PubMed ID: 23214507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterning nanoscale flow vortices in nanochannels with patterned substrates.
    Karakare S; Kar A; Kumar A; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016324. PubMed ID: 20365477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization.
    Wu ZQ; Li ZQ; Wang Y; Xia XH
    J Phys Chem Lett; 2020 Jan; 11(2):524-529. PubMed ID: 31825632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay.
    Sano H; Kazoe Y; Ohta R; Shimizu H; Morikawa K; Kitamori T
    Lab Chip; 2023 Feb; 23(4):727-736. PubMed ID: 36484269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels.
    Ishibashi R; Mawatari K; Kitamori T
    J Chromatogr A; 2012 May; 1238():152-5. PubMed ID: 22503926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supercritical CO
    Ho TA; Wang Y; Ilgen A; Criscenti LJ; Tenney CM
    Nanoscale; 2018 Nov; 10(42):19957-19963. PubMed ID: 30349913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-Dimensional Nanochannel Arrays Based on Flexible Montmorillonite Membranes.
    Liu ML; Huang M; Tian LY; Zhao LH; Ding B; Kong DB; Yang QH; Shao JJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44915-44923. PubMed ID: 30509069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.
    Peng R; Li D
    Lab Chip; 2016 Oct; 16(19):3767-76. PubMed ID: 27539019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry.
    Kazoe Y; Kubori S; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2022 Feb; 38(2):281-287. PubMed ID: 35314973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface dependent enhancement in water vapor permeation through nanochannels.
    Rangharajan KK; Mohana Sundaram P; Conlisk AT; Prakash S
    Analyst; 2018 Sep; 143(18):4256-4266. PubMed ID: 30028451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Nanoscale Gas-Liquid Interfaces in Hydrophilic/Hydrophobic Nanopatterned Nanofluidic Channels.
    Kawagishi H; Kawamata S; Xu Y
    Nano Lett; 2021 Dec; 21(24):10555-10561. PubMed ID: 34645267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.