These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31596463)
1. iTRAQ-based quantitative proteomic analysis of two transgenic soybean lines and the corresponding non-genetically modified isogenic variety. Liu W; Zhang Z; Liu X; Jin W J Biochem; 2020 Jan; 167(1):67-78. PubMed ID: 31596463 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety. Liu W; Chen H; Li L; Dong M; Zhang Z; Wan Y; Jin W J Sci Food Agric; 2021 Mar; 101(5):1869-1878. PubMed ID: 32898281 [TBL] [Abstract][Full Text] [Related]
3. iTRAQ-based quantitative tissue proteomic analysis of differentially expressed proteins (DEPs) in non-transgenic and transgenic soybean seeds. Liu W; Xu W; Li L; Dong M; Wan Y; He X; Huang K; Jin W Sci Rep; 2018 Dec; 8(1):17681. PubMed ID: 30518773 [TBL] [Abstract][Full Text] [Related]
4. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots. Wu W; Lin Y; Liu P; Chen Q; Tian J; Liang C J Exp Bot; 2018 Jan; 69(3):603-617. PubMed ID: 29329437 [TBL] [Abstract][Full Text] [Related]
5. iTRAQ-based quantitative proteomic analysis reveals the lateral meristem developmental mechanism for branched spike development in tetraploid wheat (Triticum turgidum L.). Chen S; Chen J; Hou F; Feng Y; Zhang R BMC Genomics; 2018 Apr; 19(1):228. PubMed ID: 29606089 [TBL] [Abstract][Full Text] [Related]
6. Identification of Early Salinity Stress-Responsive Proteins in Wang Y; Cong Y; Wang Y; Guo Z; Yue J; Xing Z; Gao X; Chai X Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704074 [TBL] [Abstract][Full Text] [Related]
7. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. Li J; Ding X; Han S; He T; Zhang H; Yang L; Yang S; Gai J J Proteomics; 2016 Apr; 138():72-82. PubMed ID: 26921830 [TBL] [Abstract][Full Text] [Related]
8. Differential proteomic analysis of soybean anthers by iTRAQ under high-temperature stress. Li J; Nadeem M; Chen L; Wang M; Wan M; Qiu L; Wang X J Proteomics; 2020 Oct; 229():103968. PubMed ID: 32911126 [TBL] [Abstract][Full Text] [Related]
9. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Tan Y; Zhang J; Sun Y; Tong Z; Peng C; Chang L; Guo A; Wang X Sci Rep; 2019 Jun; 9(1):8219. PubMed ID: 31160654 [TBL] [Abstract][Full Text] [Related]
10. iTRAQ-based proteomic analysis of fertile and sterile flower buds from a genetic male sterile line 'AB01' in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Zhou X; Shi F; Zhou L; Zhou Y; Liu Z; Ji R; Feng H J Proteomics; 2019 Jul; 204():103395. PubMed ID: 31146048 [TBL] [Abstract][Full Text] [Related]
11. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene. Chen H; Bodulovic G; Hall PJ; Moore A; Higgins TJ; Djordjevic MA; Rolfe BG Proteomics; 2009 Sep; 9(18):4406-15. PubMed ID: 19725077 [TBL] [Abstract][Full Text] [Related]
12. Double the action: multimodal action of a CONSTANS-LIKE protein enhances stress tolerance in soybean. Premachandran Y Plant Physiol; 2023 Apr; 191(4):2221-2223. PubMed ID: 36691349 [No Abstract] [Full Text] [Related]
13. Proteomics analysis reveals that foreign Jin L; Wang D; Mu Y; Guo Y; Lin Y; Qiu L; Pan Y GM Crops Food; 2021 Jan; 12(1):497-508. PubMed ID: 34984949 [TBL] [Abstract][Full Text] [Related]
14. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. Lambirth KC; Whaley AM; Blakley IC; Schlueter JA; Bost KL; Loraine AE; Piller KJ BMC Biotechnol; 2015 Oct; 15():89. PubMed ID: 26427366 [TBL] [Abstract][Full Text] [Related]
15. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot. Wang R; Mei Y; Xu L; Zhu X; Wang Y; Guo J; Liu L Planta; 2018 May; 247(5):1109-1122. PubMed ID: 29368016 [TBL] [Abstract][Full Text] [Related]
16. Seedless mutant 'Wuzi Ougan' (Citrus suavissima Hort. ex Tanaka 'seedless') and the wild type were compared by iTRAQ-based quantitative proteomics and integratedly analyzed with transcriptome to improve understanding of male sterility. Zhang C; Yu D; Ke F; Zhu M; Xu J; Zhang M BMC Genet; 2018 Nov; 19(1):106. PubMed ID: 30458706 [TBL] [Abstract][Full Text] [Related]
17. iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Xu Y; Zeng X; Wu J; Zhang F; Li C; Jiang J; Wang Y; Sun W Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373160 [TBL] [Abstract][Full Text] [Related]
18. iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes ( Zeng X; Xu Y; Jiang J; Zhang F; Ma L; Wu D; Wang Y; Sun W Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562938 [TBL] [Abstract][Full Text] [Related]
19. iTRAQ-Based Proteomic Analysis of Ogura-CMS Cabbage and Its Maintainer Line. Han F; Zhang X; Yang L; Zhuang M; Zhang Y; Li Z; Fang Z; Lv H Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326665 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of four Brazilian MON810 maize varieties and their four non-genetically-modified isogenic varieties. Balsamo GM; Cangahuala-Inocente GC; Bertoldo JB; Terenzi H; Arisi AC J Agric Food Chem; 2011 Nov; 59(21):11553-9. PubMed ID: 21958074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]